Skip to main content

Regulation of Atrioventricular Node Function by Adenosine

  • Conference paper
Topics and Perspectives in Adenosine Research

Summary

Increasing evidence implicates the nucleoside adenosine as an important modulator of a variety of physiological functions. Amongs its various cardiovascular actions, the depressant effect of this nucleoside on the atrioventricular (AV) node (i. e., negative dromotropic effect) was one of the first to be recognized. Like its many other actions, the negative dromotropic effect of adenosine is:

  1. a)

    surface receptor mediated (subtype A1);

  2. b)

    potentiated by nucleoside transport blockers and adenosine deaminase inhibitors; and

  3. c)

    antagonized competitvely by alkylxanthines and abolished by adenosine deaminase.

Adenosine has significant electrophysiological effects on atrial and atrionodal cells, but it is its depressant effect on nodal (N) cells that identifies the N-zone of the AV node as the site of AV block. Previous observations that hypoxia- and ischemia-induced AV block can be predictably altered by interventions known to potentiate and antagonize the actions of adenosine have led to the hypothesis that the AV conduction disturbances seen during hypoxia and ischemia are due to endogenously released adenosine. Evidence in support of this hypothesis includes:

  1. a)

    adenosine deaminase antagonizes up to 95% of the AV conduction time (AVCT) prolongation caused by hypoxia;

  2. b)

    alkylxanthines antagonize to an equal extent the AVCT prolongation of similar magnitude caused by adenosine or hypoxia; and

  3. c)

    the amount of adenosine released by hypoxia is sufficient to account for the magnitude of AVCT prolongation caused by hypoxia.

Since adenosine has similar dromotropic effects in the human heart, the above findings suggest that adenosine may be the underlying mediator of bradyarrhythmias (sinus slowing and AV block) associated with ischemia of the nodal regions of the heart. Although this is an attractive hypothesis, the extent to which adenosine is involved in the modulation of AV node function in the normal and diseased heart is yet to be determined.

This work was supported in part by Grant-in-Aid 81–911 from the American Heart Association, American Heart Association-Virginia Affiliate and from the National Heart, Lung and Blood Institute (HL31111 and HL 35272). L. Belardinelli is the recipient of National Institutes of Health Research Career Development Award KO4 HL00969.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alanis J, Lopez E, Mandoki JJ, Pilar G (1959) Propagation of impulses through the atrioven-tricular node. Am J Physiol 197:1171–1174

    PubMed  CAS  Google Scholar 

  2. Anderson RH, Janse MJ, van Capelle JL, Billete J, Becker AE, Durrer D (1974) A combined morphological and electrophysiological study of the atrioventricular node of the rabbit heart. Circ Res 35:909–922

    PubMed  CAS  Google Scholar 

  3. Angelakos ET, Glassman PM (1961) Cardiovascular action of adenosine and other nucleosi-des. Proc Soc Exp Biol Med 106:762–763

    PubMed  CAS  Google Scholar 

  4. Bagdonas AA, Stuckey JH, Plera J, Amer NS, Hoffman BF (1961) Effects of ischemia and hypoxia on the specialized conducting system of the canine heart. Am Heart J 61:206–218

    Article  PubMed  CAS  Google Scholar 

  5. Bauldauf J, Bunag J (1971) Release of a negative chronotropic and dromotropic substance during cardiac hypoxia. Acta Pharmacol Toxicol (Copenh) 29:(Suppl 4):4

    Google Scholar 

  6. Belardinelli L, Clemo SHF (1985) Site of adenosine action on isolated guinea pig atrioventricular node (abstract). Fed Proc 44:468

    Google Scholar 

  7. Belardinelli L, Isenberg G (1983) Isolated atrial myocytes: adenosine and acetylcholine increase potassium conductance. Am J Physiol 244:H734–H737

    PubMed  CAS  Google Scholar 

  8. Belardinelli J, Rubio R, Berne RM (1979) Blockade of Ca2+ dependent rat atrial slow action potentials by adenosine and lanthanum. Pflügers Arch 380:19–27

    Article  PubMed  CAS  Google Scholar 

  9. Belardinelli L, Belloni FL, Rubio R, Berne RM (1980) Atrioventricular conduction disturbances during hypoxia: possible role of adenosine in rabbit and guinea pig heart. Circ Res 47:684–691

    PubMed  CAS  Google Scholar 

  10. Belardinelli L, Mattos EC, Berne RM (1981) Evidence for adenosine mediation of atrioventricular block in the ischemic canine myocardium. J Clin Invest 68:195–205

    Article  PubMed  CAS  Google Scholar 

  11. Belardinelli L, Fenton RA, West A, Linden J, Althaus JS, Berne RM (1982) Extracellular action of adenosine and the antagonism by aminophylline on the atrioventricular conduction of isolated perfused guinea pig and rat hearts. Circ Res 51:569–579

    PubMed  CAS  Google Scholar 

  12. Bennet DW, Drury AN (1931) Further observations relating to the physiological activity of adenine compounds. J Physiol 72:288–320

    PubMed  CAS  Google Scholar 

  13. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    PubMed  CAS  Google Scholar 

  14. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    PubMed  CAS  Google Scholar 

  15. Bretschneider VHJ, Frank A, Bernard U, Kochsiek K, Scheler F (1959) Die Wirkung eines Pyrimidopyrimidin-Derivates auf die Sauerstoff-Versorgung des Herzmuskels. Arzneimittelforsch 9:49–59

    PubMed  CAS  Google Scholar 

  16. Bunger R, Haddy FJ, Gerlach E (1975) Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflügers Arch 358:213–224

    Article  PubMed  CAS  Google Scholar 

  17. Chiba S, Hashimoto K (1972) Differences in chronotropic and dromotropic responses of the SA and AV nodes to adenosine and acetylcholine. Jp J Pharmacol 22:273–274

    Article  CAS  Google Scholar 

  18. Chiba S, Kubota K, Hashimoto K (1973) Inhibition of the negative chronotropic action of adenosine by caffeine in the dog. Eur J Pharmacol 21:281–285

    Article  PubMed  CAS  Google Scholar 

  19. Clemo SHF, Belardinelli L (1985) A comparative study of antagonism by alkylxanthines on the negative dromotropic effect of adenosine and hypoxia in isolated guinea pig hearts. In: Andersson KE, Persson CGA (eds) Anti-asthma xanthines and adenosine. Excerpta Medica, Amsterdam, pp 417–422

    Google Scholar 

  20. Clemo SHF, Boykin MT, Belardinelli L (1985) Adenosine deaminase (ADA) inhibition of hypoxia-induced atrioventricular (AV) conduction delay in isolated guinea pig hearts. Fed Proc 44:3565 (abstract)

    Google Scholar 

  21. Clemo HF, Bourassa A, Linden J, Belardinelli L (1986) Two novel high affinity adenosine antagonists attenuate the negative dromotropic effect of adenosine and hypoxia in guinea pig heart. Pflügers Arch 407:48

    Google Scholar 

  22. De Gubareff T, Sleator W (1965) Effects of caffeine on mammalian atrial muscle and its interaction with adenosine and calcium. J Pharmacol Exp Ther 148:202–214

    Google Scholar 

  23. Deuticke B, Gerlach E (1966) Kompetitive Hemmung der Adenosin-Deaminase als mögliche Ursache der coronardilatierenden Wirkung einer Pyrimidopyrimidin-Verbindung. Naunyn Schmiedebergs Arch Pharmacol 255:107–119

    CAS  Google Scholar 

  24. DiMarco JP, Sellers TD, Belardinelli L (1984) Paroxysmal supraventricular tachycardia with wenckebach block: evidence for reentry within the upper portion of the atrioventricular node. J Am Coll Cardiol 3:1551–1555

    Article  PubMed  CAS  Google Scholar 

  25. Drury AN, Szent Györgyi A (1929) The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol (Lond) 68:213–237

    PubMed  CAS  Google Scholar 

  26. Guthrie JR, Nayler WG (1967) Interaction between caffeine and adenosine on calcium exchangeability in mammalian atria. Arch Int Pharmacodyn Ther 170:249–255

    PubMed  CAS  Google Scholar 

  27. Honey RM, Ritchie WT, Thomson WAR (1930) The action of adenosine upon the human heart. Q J Med 23:485–490

    CAS  Google Scholar 

  28. James TN, Bear ES, Frink RJ, Urthaler F (1971) Pharmacologic production of atrioventricular block with and without initial bundle branch block. J Pharmacol Exp Ther 179:338–346

    PubMed  CAS  Google Scholar 

  29. Kolassa N, Pfleger K, Rummel W (1970) Specificity of adenosine uptake into the heart and inhibition by dipyridamole. Eur J Pharmacol 9:265–268

    Article  PubMed  CAS  Google Scholar 

  30. Kolassa N, Pfleger K, Tram M (1971) Species differences in action and elimination of adenosine after dipyridamole and hexobendine. Eur J Pharmacol 13:320–325

    Article  PubMed  CAS  Google Scholar 

  31. Koss FW, Beisenherz G, Maerkisch R (1962) Die Eliminierung von Adenosin aus dem Blut unter dem Einfluß von 2,6-Bis(diathanolamino)-4,8-dipiperidinopyrimido-(5,4-d-)-pyrimidin und Papaverin. Arzneimittelforsch 12:1130–1131

    PubMed  CAS  Google Scholar 

  32. Lerman BB, Belardinelli L, West GA, Berne RM, DiMarco JP (1986) Adenosine sensitive ventricular tachycardia: evidence suggesting cyclic AMP mediated triggered activity. Circulation 74:270–280

    Article  PubMed  CAS  Google Scholar 

  33. Lotan I, Dascal N, Oron Y, Cohen S, Lass Y (1985) Adenosine-induced K+ current in Xenopus oocyte and the role of adenosine 3′,5′-monophosphate. Mol Pharmacol 28:170–177

    PubMed  CAS  Google Scholar 

  34. Paes de Carvalho A de Almeida DF (1960) Spread of activity through the atrioventricular node. Circ Res 8:801–809

    Google Scholar 

  35. Pelleg A, Belhassen B, Ilia R, Laniado S (1985) Comparative electrophysiologic effects of adenosine triphosphate and adenosine in the canine heart: influence of atropine, proprano-lol, vagotomy, dipyridamole and aminophylline. Am J Cardiol 55:571–576

    Article  PubMed  CAS  Google Scholar 

  36. Pfleger K, Seifen E, Schondorf H (1969) Potenzierung der Adenosinwirkung am Herzen durch Inosin. Biochem Pharmacol 18:43–51

    Article  PubMed  CAS  Google Scholar 

  37. Rubio R, Wiedmeier VT, Berne RM (1974) Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6:561–566

    Article  PubMed  CAS  Google Scholar 

  38. Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6:13–23

    PubMed  CAS  Google Scholar 

  39. Schaumann VW, Juhran W, Dietmann K (1970) Antagonismus der Kreislaufwirkungen von Adenosin durch Theophyllin. Arzneimittelforsch 20:372–377

    PubMed  CAS  Google Scholar 

  40. Schrader J, Rubio R, Berne RM (1975) Inhibition of slow action potentials of guinea pig atrial muscle by adenosine: a possible effect on Ca2+ influx. J Mol Cell Cardiol 7:427–433

    Article  PubMed  CAS  Google Scholar 

  41. Senges J, Mizutani T, Pelzer D, Brachmann J, Sonnhof U, Kubler W (1979) Effect of hypoxia on the sinoatrial node, atrium, and atrioventricular node in the rabbit heart. Circ Res 44:856–863

    PubMed  CAS  Google Scholar 

  42. Stafford A (1966) Potentiation of adenosine and the adenine nucleotides by dipyridamole. Br J Pharmacol 28:218–227

    CAS  Google Scholar 

  43. Szentmiklosi AJ, Nemeth M, Szegi J, Papp JG, Szekeres L (1980) Effect of adenosine on sinoatrial and ventricular automaticity of the guinea pig. Naunyn Schmiedbergs Arch Pharmacol 311:147–149

    Article  CAS  Google Scholar 

  44. Thomas RA, Rubio R, Berne RM (1975) Comparison of the adenine nucleotide metabolism of dog atrial and ventricular myocardium. J Mol Cell Cardiol 7:115–123

    Article  PubMed  CAS  Google Scholar 

  45. Trussel LO, Jackson MB (1985) Adenosine-activated potassium conductance in cultures striatal neurons. Proc Natl Acad Sci USA 82:4857–4861

    Article  Google Scholar 

  46. Urthaler F, James TN (1972) Effects of adenosine and ATP on AV conduction and on AV junctional rhythm. J Lab Clin Med 79:96–105

    PubMed  CAS  Google Scholar 

  47. Wesley RC, Lerman BB, DiMarco JP, Berne RM, Belardinelli L (1986) Mechanism of atropine-resistant atrioventricular block during inferior myocardial infarction: possible role of adenosine. J Am Coll Cardiol 8:1232–1234

    Article  PubMed  Google Scholar 

  48. West GA, Giles W, Belardinelli L (1986) The negative chronotropic effect of adenosine in sinus node cells. This volume, pp 336-343

    Google Scholar 

  49. Zumino AZP, Parisi IM, De Ceretti ERP (1970) Effect of ischemia and low-sodium medium on atrioventricular conduction. Am J Physiol 218:1489–1494

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Belardinelli, L., West, G.A., Clemo, S.H.F. (1987). Regulation of Atrioventricular Node Function by Adenosine. In: Gerlach, E., Becker, B.F. (eds) Topics and Perspectives in Adenosine Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45619-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45619-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45621-3

  • Online ISBN: 978-3-642-45619-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics