Skip to main content

Effect of Lethal Doses of Complement on the Functional Integrity of Target Enterobacteria

  • Chapter
Bacteria and Complement

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 121))

Abstract

Exposure of a wide variety of gram-negative bacteria to serum results in the activation of either the classical or alternative pathway of complement and the generation of macromolecular C5b-9 protein complexes. When formed on the surface of susceptible Escherichia coli (Bladen et al. 1966) or other gramnegative bacteria (Bladen et al. 1967; Swanson and Goldschneider 1969; Harriman et al. 1982), C5b-9 complexes form remarkably stable lesions embedded in the bacterial envelope where they behave essentially as integral membrane proteins (Joiner et al. 1983; Kroll et al. 1983). Complexes are formed from the fluid-phase proteins (C5b, C6, C7, C8, and C9) of the terminal complement membrane attack pathway by spontaneous association following enzymatic cleavage of C5 (Bhakdi 1980; Mayer 1981). Polymerization is accompanied by the appearance of terminal apolar regions on the cylindrical C5b-9 complex that facilitate insertion into hydrophobic domains of target membranes (Bhakdi and Tranum-Jensen 1978). There is a large body of evidence indicating that insertion of complexes into the bacterial envelope is directly responsible for initiating the sequence of events that results in the death of the target bacterial cell (Inoue et al. 1968 b; Schreiber et al. 1979; Joiner et al. 1982 a, b; Kroll et al. 1984). Conversely, serum-resistant strains appear to escape the potentially lethal action of complement because C5b-9 complexes fail to insert in a stable fashion into the target membrane (Joiner et al. 1982b; Kroll et al. 1983; Taylor and Kroll 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amano T, Nishimoto M, Kinjo K, Inoue K, Inai S, Seki Y, Kashiba S (1954) Studies on the immune bacteriolysis. III. Influence of immune bacteriolysis upon bacterial respiration. Med J Osaka Univ 5:145–165

    Google Scholar 

  • Amano T, Kinjo K, Nishimoto M, Inoue K, Yachiku H (1955) Studies on the immune bacteriolysis. VI. Cause of the death of bacteria by immune bacteriolysis. Med J Osaka Univ 6:57–66

    Google Scholar 

  • Amano T, Inoue K, Tanigawa Y (1956) Studies on the immune bacteriolysis. X. The influence of immune bacteriolysis upon the adaptive enzyme formation and on phage reproduction in the cells of Escherichia coli B. Med J Osaka Univ 6:1027–1034

    Google Scholar 

  • Ankam Y, Heppel LA (1967) On the nature of the changes induced in Escherichia coli by osmotic shock. J Biol Chem 242:2561–2569

    Google Scholar 

  • Bayer ME (1975) Role of adhesion zones in bacterial cell-surface function and biogenesis. In: Tzagoloff A (ed) Membrane biogenesis. Plenum, New York, pp 393–427

    Google Scholar 

  • Beckerdite-Quagliata S, Simberkoff M, Eisbach P (1975) Effects of human and rabbit serum on viability, permeability, and envelope lipids of Serratia marcescens. Infect Immun 11:758–766

    PubMed  CAS  Google Scholar 

  • Bhakdi S (1980) On the molecular nature of the complement lesion. Behring Inst Mitt 65: 1–15

    CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1978) Molecular nature of the complement lesion. Proc Natl Acad Sci (USA) 75:5655–5659

    Article  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1983) Membrane damage by complement. Biochim Biophys Acta 737:343–372

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984 a) Mechanism of complement cytolysis and the concept of channelforming proteins. Philos Trans R Soc Lond [Biol] 306: 311–324

    Article  CAS  Google Scholar 

  • Bhakdi S, Tranum-Jensen J (1984 b) On the cause and nature of C9-related heterogeneity of terminal complement complexes generated on target erythrocytes through the action of whole serum. J Immunol 133: 1453–1463

    PubMed  CAS  Google Scholar 

  • Bhakdi S, Muhly M, Roth M (1983) Preparation and isolation of specific antibodies to complement components. In: Langone JJ, Van Vunakis H (eds) Methods in enzymology, vol 93. Academic, New York, pp 409–420

    Google Scholar 

  • Bladen HA, Evans RT, Mergenhagen SE (1966) Lesions in Escherichia coli membranes after action of antibody and complement. J Bacteriol 91:2377–2381

    PubMed  CAS  Google Scholar 

  • Boyle MDP, Gee AP, Borsos T (1979) Studies on the terminal stages of immune hemolysis. VI. Osmotic blockers of differing Stokes’ radii detect complement-induced transmembrane channels of differing size. J Immunol 123:77–82

    PubMed  CAS  Google Scholar 

  • Cavard D, Pages JM, Lazdunski CJ (1982 a) A protease as a possible sensor of environmental conditions in E. coli outer membrane. Mol Gen Genet 188: 508–512

    Article  PubMed  CAS  Google Scholar 

  • Cavard D, Régnier P, Lazdunski C (1982 b) Specific cleavage of colicin A by outer membrane proteases from sensitive and insensitive strains of E. coli. FEMS Microbiol Lett 14: 283–289

    Article  CAS  Google Scholar 

  • Davis SD, Boatman ES, Gemsa D, Iannetta A, Wedgwood RJ (1969) Biochemical and fine structural changes induced in Escherichia coli by human serum. Microbios 1B: 69–86

    Google Scholar 

  • Demonty J, De Graeve J (1982) Release of endotoxic lipopolysaccharide by sensitive strains of Escherichia coli submitted to the bactericidal action of human serum. Med Microbiol Immunol (Berl) 170:265–277

    Article  CAS  Google Scholar 

  • Doi O, Nojima S (1974) Lipase activity of detergent-resistant phospholipase A in Escherichia coli. Biochim Biophys Acta 369: 64–69

    PubMed  CAS  Google Scholar 

  • Esser AF (1980) Bactericidal activity of complement. Fed Proc 39: 1755 (Abstract)

    Google Scholar 

  • Esser AF, Kolb WP, Podack ER, Müller-Eberhard HJ (1979) Molecular reorganization of lipid bilayers by complement: a possible mechanism for membranolysis. Proc Natl Acad Sci USA 76:1410–1414

    Article  PubMed  CAS  Google Scholar 

  • Feingold DS, Goldman JN, Kuritz HM (1968 a) Locus of the action of serum and the role of lysozyme in the serum bactericidal reaction. J Bacteriol 96: 2118–2126

    PubMed  CAS  Google Scholar 

  • Feingold DS, Goldman JN, Kuritz HM (1968 b) Locus of the lethal event in the serum bactericidal reaction. J Bacteriol 96: 2127–2131

    PubMed  CAS  Google Scholar 

  • Glynn AA (1969) The complement lysozyme sequence in immune bacteriolysis. Immunology 16:463–471

    PubMed  CAS  Google Scholar 

  • Glynn AA, Milne CM (1967) A kinetic study of the bacteriolytic and bactericidal action of human serum. Immunology 12:639–653

    PubMed  CAS  Google Scholar 

  • Griffiths E (1971a) Selective inhibition of macromolecular synthesis in Pasteurella septica by antiserum and its reversal by iron. Nature New Biol 232: 89–90

    PubMed  CAS  Google Scholar 

  • Griffiths E (1971 b) Mechanism of action of specific antiserum on Pasteurella septica. Selective inhibition of net macromolecular synthesis and its reversal by iron compounds. Eur J Biochem 23: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Griffiths E (1974 a) Rapid degradation of ribosomal RNA in Pasteurella septica induced by specific antiserum. Biochim Biophys Acta 340: 400–412

    PubMed  CAS  Google Scholar 

  • Griffiths E (1974 b) Metabolically controlled killing of Pasteurella septica by antibody and complement. Biochim Biophys Acta 362: 598–602

    Article  PubMed  CAS  Google Scholar 

  • Harriman GR, Podack ER, Braude AI, Corbeil LC, Esser AF, Curd JG (1982) Activation of complement by serum-resistant Neisseria gonorrhoeae. Assembly of the membrane attack complex without subsequent cell death. J Exp Med 156:1235–1249

    Article  PubMed  CAS  Google Scholar 

  • Hirota Y, Suzuki H, Nishimura Y, Yasuda S (1977) On the process of cellular division in Escherichia coli: a mutant of E. coli lacking a murein-lipoprotein. Proc Natl Acad Sci USA 74:1417–1420

    Article  PubMed  CAS  Google Scholar 

  • Hu VW, Esser AF, Podack ER, Wisnieski BJ (1981) The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol 127:380–386

    PubMed  CAS  Google Scholar 

  • Humphrey JH, Dourmashkin RR (1969) The lesions in cell membranes caused by complement. Adv Immunol 11:75–115

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Tanigawa Y, Takubo M, Satani M, Amano T (1959) Quantitative studies on immune bacteriolysis. II. The role of lysozyme in immune bacteriolysis. Biken J 2: 1–20

    Google Scholar 

  • Inoue K, Takamizawa A, Kurimura T, Yonemasu K (1968 a) Studies on the immune bacteriolysis. XIII. Leakage of enzymes from Escherichia coli during immune bacteriolysis. Biken J 11: 193–201

    PubMed  CAS  Google Scholar 

  • Inoue K, Yonemasu K, Takamizawa A, Amano T (1968 b) Studies on the immune bacteriolysis. XIV. Requirement of all nine components of complement for immune bacteriolysis. Biken J 11: 203–206

    PubMed  CAS  Google Scholar 

  • Inoue K, Takamizawa A, Yano KI, Amano T (1974 a) Chemical studies on damages of Escherichia coli by the immune bactericidal reaction. I. Release and degradation of phospholipids from damaged bacteria. Biken J 17: 127–134

    PubMed  CAS  Google Scholar 

  • Inoue K, Yano KI, Amano T (1974b) Chemical studies on damages of Escherichia coli by the immune bactericidal reaction. II. Release of phosphatidylethanolamine from a phospholipase A-deficient mutant of E. coli during the immune bactericidal reaction. Biken J 17: 135–140

    PubMed  CAS  Google Scholar 

  • Inoue K, Kinoshita T, Okada M, Akiyama Y (1977) Release of phospholipids from complementmediated lesions on the surface structure of Escherichia coli. J Immunol 119: 65–72

    PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982a) Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155:797–808

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Frank MM (1982b) Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 155: 809–819

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Warren KA, Brown EJ, Swanson J, Frank MM (1983) Studies on the mechanism of bacterial resistance to complement-bacterial outer membrane constituents on serum-resistant but not on serum-sensitive Neisseria gonorrhoeae. J Immunol 131:1443–1451

    PubMed  CAS  Google Scholar 

  • Kinoshita T, Inoue K, Okada M, Akiyama Y (1977) Release of phospholipids from Kposomal model membranes damaged by antibody and complement. J Immunol 119:73–78

    PubMed  CAS  Google Scholar 

  • Konings WN, Hellingwerf KJ, Robillard GT (1981) Transport across bacterial membranes. In: Bonting SL, De Pont JJHHM (eds) Membrane transport. Elsevier/North-Holland Biomedical, Amsterdam, pp 257–283

    Google Scholar 

  • Kozono H, Hong K, Takeda J, Kinoshita T, Inoue K (1983) Attack site of complement on gramnegative bacteria. Immunobiology 164: 257 (Abstract)

    Google Scholar 

  • Kreutzer DL, Vandermaten M, Buller CS, Robertson DC, Hirata AA (1977) Role of bacterial phospholipases in serum-mediated killing of Escherichia coli. Infect Immun 18: 183–188

    PubMed  CAS  Google Scholar 

  • Kroll HP, Bhakdi S, Taylor PW (1983) Membrane changes induced by exposure of Escherichia coli to human serum. Infect Immun 42:1055–1066

    PubMed  CAS  Google Scholar 

  • Kroll H-P, Voigt W-H, Taylor PW (1984) Stable insertion of C5b-9 complement complexes into the outer membrane of serum treated, susceptible Escherichia coli cells as a prerequisite for killing. Zentralbl Bakteriol Microbiol Hyg [A] 258:316–326

    CAS  Google Scholar 

  • Langley KE, Hawrot E, Kennedy EP (1982) Membrane assembly: movement of phosphatidylserine between the cytoplasmic and outer membranes of Escherichia coli. J Bacteriol 152: 1033–1041

    PubMed  CAS  Google Scholar 

  • Law SK, Lichtenberg NA, Levine RP (1980) Evidence for an ester linkage between the labile binding site of C3b and receptive surfaces. J Immunol 123:1388–1394

    Google Scholar 

  • Lazdunski C, Lazdunski M (1969) Zn2+ and Co2+ alkaline phosphatases of E. coli. A comparative kinetic study. Eur J Biochem 7:294–300

    Article  PubMed  CAS  Google Scholar 

  • Lint TF, Zeitz HJ, Gewurz H (1980) Inherited deficiency of the ninth component of complement in man. J Immunol 125:2252–2257

    PubMed  CAS  Google Scholar 

  • Lugtenberg B, Van Alphen L (1983) Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 737:51–115

    PubMed  CAS  Google Scholar 

  • Maloney PC (1982) Energy coupling to ATP synthesis by the proton-translocating ATPase. J Membrane Biol 67: 1–12

    Article  CAS  Google Scholar 

  • Martinez RJ, Carroll SF (1980) Sequential metabolic expressions of the lethal process in human serum-treated Escherichia coli: role of lysozyme. Infect Immun 28:735–745

    PubMed  CAS  Google Scholar 

  • Mayer MM (1981) Membrane damage by complement. Johns Hopkins Med J 148:243–258

    PubMed  CAS  Google Scholar 

  • Melching L, Vas SI (1971) Effects of serum components on gram-negative bacteria during bactericidal reactions. Infect Immun 3:107–115

    PubMed  CAS  Google Scholar 

  • Michael JG, Braun W (1959) Modification of bactericidal effects of human serum. Proc Soc Exp Biol Med 102:486–490

    CAS  Google Scholar 

  • Morgan BP, Campbell AK, Luzio JP, Siddle K (1983) Immunoradiometric assay for human complement component C9 utilizing monoclonal antibodies. Clin Chim Acta 134:85–94

    Article  PubMed  CAS  Google Scholar 

  • Mühlradt PF, Golecki J (1975) Asymmetrical distribution and artefactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium. Eur J Biochem 51:343–352

    Article  PubMed  Google Scholar 

  • Mühlradt PF, Menzel J, Golecki JR, Speth V (1973) Outer membrane of Salmonella: sites of export of newly synthesized lipopolysaccharide on the bacterial surface. Eur J Biochem 35:471–481

    Article  PubMed  Google Scholar 

  • Muschel LH, Larsen LJ (1970) Effect of hypertonic sucrose upon the immune bactericidal reaction. Infect Immun 1:51–55

    PubMed  CAS  Google Scholar 

  • Nikaido H (1973) Biosynthesis and assembly of lipopolysaccharide and the outer membrane layer of gram-negative cell wall. In: Leive L (ed) Bacterial membranes and walls. Marcel Dekker, New York, pp 131–208

    Google Scholar 

  • Osborn MJ, Gander JE, Parisi E, Carson J (1972) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J Biol Chem 247:3962–3972

    PubMed  CAS  Google Scholar 

  • Osborn MJ, Rick PD, Lehmann V, Rupprecht E, Singh M (1974) Structure and biogenesis of the bacterial envelope of gram-negative bacteria. Ann NY Acad Sci 235:52–65

    Article  PubMed  CAS  Google Scholar 

  • Osborn MJ, Rick PD, Rasmussen NS (1980) Mechanism of assembly of the outer membrane of Salmonella typhimurium. Translocation and integration of an incomplete mutant lipid A into the outer membrane. J Biol Chem 255:4246–4251

    PubMed  CAS  Google Scholar 

  • Podack ER, Tschopp J (1982) Polymerization of the ninth component of complement (C9): formation of poly (C9) with a tubular structure resembling the membrane attack complex of complement. Proc Natl Acad Sci USA 79:574–578

    Article  PubMed  CAS  Google Scholar 

  • Podack ER, Tschopp J (1984) Membrane attack by complement. Mol Immunol 21:589–603

    Article  PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1982) Size of the transmembrane channels produced by complement proteins C5b-8. J Immunol 129:1143–1146

    PubMed  CAS  Google Scholar 

  • Ramm LE, Whitlow MB, Mayer MM (1983) Size distribution and stability of the transmembrane channels formed by complement complex C5b-9. Mol Immunol 20:155–160

    Article  PubMed  CAS  Google Scholar 

  • Reid TW, Wilson IB (1971) E. coli alkaline phosphatase. In: Bayer PD (ed) The enzymes, vol 4, 3rd edn. Academic, New York, pp 373–415

    Google Scholar 

  • Schreiber RD, Morrison DC, Podack ER, Müller-Eberhard HJ (1979) Bactericidal activity of the alternative complement pathway generated from 11 isolated plasma proteins. J Exp Med 149:870–882

    Article  PubMed  CAS  Google Scholar 

  • Sevag MG, Miller RE (1948) Studies on the effect of immune reactions on the metabolism of bacteria. J Bacteriol 55:381–392

    CAS  Google Scholar 

  • Sims PJ, Lauf PK (1978) Steady-state analysis of tracer exchange across the C5b-9 complement lesion in a biologic membrane. Proc Natl Acad Sci USA 75:5669–5673

    Article  PubMed  CAS  Google Scholar 

  • Smit J, Kamio Y, Nikaido H (1975) Outer membrane of Salmonella typhimurium: chemical analysis and freeze fracture studies with lipopolysaccharide mutants. J Bacteriol 124:942–958

    PubMed  CAS  Google Scholar 

  • Stock JB, Rauch B, Roseman S (1977) Periplasmic space in Salmonella typhimurium and Escherichia coli. J Biol Chem 252: 7850–7861

    PubMed  CAS  Google Scholar 

  • Suzuki H, Nishimura Y, Yasuda S, Nishimura A, Yamada M, Hirota Y (1978) Murein-lipoprotein of Escherichia coli: a protein involved in the stabilization of bacterial cell envelope. Mol Gen Genet 167: 1–9

    PubMed  CAS  Google Scholar 

  • Swanson J, Goldschneider I (1969) The serum bactericidal system: ultrastructural changes in Neisseria meningitidis exposed to normal rat serum. J Exp Med 129:51–79

    Article  PubMed  CAS  Google Scholar 

  • Taylor PW, Kroll HP (1983) Killing of an encapsulated strain of Escherichia coli by human serum. Infect Immun 39:122–131

    PubMed  CAS  Google Scholar 

  • Taylor PW, Kroll HP (1984) Interaction of human complement proteins with serum-sensitive and serum-resistant strains of Escherichia coli. Mol Immunol 21: 609–620

    Article  PubMed  CAS  Google Scholar 

  • Tranum-Jensen J, Bhakdi S (1983) Freeze-fracture analysis of the membrane lesion of human complement. J Cell Biol 97:618–626

    Article  PubMed  CAS  Google Scholar 

  • Tranum-Jensen J, Bhakdi S, Bhakdi-Lehnen B, Bjerrum OJ, Speth V (1978) Complement lysis: the ultrastructure and orientation of the C5b-9 complex on target sheep erythrocyte membranes. Scand J Immunol 7:45–56

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw AC (1962) The complement-dependent bacteriolytic activity of normal human serum. I. The effect of pH and ionic strength and the role of lysozyme. J Exp Med 115:1231–1249

    Article  PubMed  CAS  Google Scholar 

  • Weiss MJ, Luria SE (1978) Reduction of membrane potential, an immediate effect of colicin K. Proc Natl Acad Sci (USA) 75:2483–2487

    Article  CAS  Google Scholar 

  • Wilson LA, Spitznagel JK (1968) Molecular and structural damage to Escherichia coli produced by antibody, complement, and lysozyme systems. J Bacteriol 96:1339–1348

    PubMed  CAS  Google Scholar 

  • Wilson LA, Spitznagel JK (1971) Characteristics of complement-dependent release of phospholipid from Escherichia coli. Infect Immun 4: 23–28

    PubMed  CAS  Google Scholar 

  • Wright SD, Levine RP (1981) How complement kills E. coli. I. Location of the lethal lesion. J Immunol 127:1146–1151

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Taylor, P.W., Kroll, HP. (1985). Effect of Lethal Doses of Complement on the Functional Integrity of Target Enterobacteria. In: Loos, M. (eds) Bacteria and Complement. Current Topics in Microbiology and Immunology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45604-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45604-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45606-0

  • Online ISBN: 978-3-642-45604-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics