Skip to main content

The Role of the Classical Pathway for the Bactericidal Effect of Normal Sera Against Gram-Negative Bacteria

  • Chapter
Book cover Bacteria and Complement

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 121))

Abstract

Many gram-negative bacteria are killed after treatment with normal serum. This phenomenon was already described in 1889 by Buchner. The serum-bactericidal effect is abolished when serum has been incubated for 30 min at 56° C. Gram-positive bacteria are less sensitive than gram-negative bacteria to direct killing, although gram-positive cocci are opsonized by the action of serum mediated by antibodies and complement (Inoue et al. 1968; Johnston et al. 1969). Normal sera exhibit bactericidal and bacteriolytic properties against some gramnegative strains; whereas, other gram-negative strains are serum resistant. It has been shown that serum from C4-deficient guinea pigs is able to kill some gram-negative rods, due to the activation of the alternative pathway (Bjornson and Bjornson 1977; Root et al. 1972). Other rods are resistant or killed slowly when the classical complement pathway was abolished by removing Ca++ with EGTA (Traub and Kleber 1976). Furthermore, it was found that most of the smooth strains of gram-negative bacteria are serum resistant; whereas, the corresponding rough forms are extremely serum sensitive (Muschel and Larsen 1970; Rowley 1968; Good and Day 1977). These investigations provided evidence that the composition of the bacterial surface may influence the reaction of the bacteria with the lytic system (Sterzl et al. 1964). The bacteriolytic properties of serum are mediated by the deposition or insertion of the assembled terminal proteins of the complement cascade, C5b-9 (the so-called membrane attack complex, MAC), into the bacterial envelope. The antibody-dependent activation of the classical complement pathway as well as activation of the alternative pathway by bacteria has been extensively studied. However, several strains are rapidly killed in nonimmune sera. Furthermore, it was reported that Cl is absorbed to Mycoplasma pneumoniae in the absence of antibodies; the direct interaction with Cl and the activation of the classical C cascade had even more biological consequences for these bacteria than did activation of the alternative pathway (Bredt et al. 1977). The experiments presented in this study indicate that the antibody-independent interaction of Cl with bacteria and bacterial membrane constituents is a common phenomenon leading to the activation of the complement system and subsequently to the killing of these bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartholomew RM, Esser AF (1978) Differences in activation of human and guinea-pig complement by retroviruses. J Immunol 121:1748–1751

    PubMed  CAS  Google Scholar 

  • Berkel IA, Loos M, Sanal Ö, Mauff G, Gimgen Y, Örs U, Ersoy F, Yegin O (1979) Clinical and immunological studies in case of selective complement Clq deficiency. Clin Exp Immunol 38:52–63

    PubMed  CAS  Google Scholar 

  • Berkel AI, Loos M, Sanal Ö, Ersoy F, Yegin O (1981) Selective complement Clq deficiency. Immunol Lett 2:263–267

    Article  Google Scholar 

  • Betz SJ, Isliker H (1981) Antibody-independent interactions between E. coli J5 and human complement components. J Immunol 127:1748–1754

    PubMed  CAS  Google Scholar 

  • Betz SJ, Page N, Estrade C, Isliker H (1982) The effect of specific antibody on antibody-independent interactions between E. coli J5 and human complement. J Immunol 128:707–711

    PubMed  CAS  Google Scholar 

  • Bjornson AB, Bjornson HW (1977) Activation of complement by opportunist pathogens and chemotypes of Salmonella minnesota. Infect Immun 16:748–753

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ (1965) Hemolysin titration based on fixation of the activated first component of complement: evidence that one molecule of hemolysin suffices to sensitize an erythrocyte. J Immunol 95:559–566

    PubMed  CAS  Google Scholar 

  • Borsos T, Rapp HJ, Walz UL (1964) Action of the first component of complement. Activation of Cla in the hemolytic system. J Immunol 92:108–112

    PubMed  CAS  Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Mühlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS (1975) Freeze-etching nomenclature. Science 190:54–56

    Article  PubMed  CAS  Google Scholar 

  • Bredt W, Wellek B, Brunner H, Loos M (1977) Studies on the interaction between Mycoplasma pneumoniae and the first component of complement. Infect Immun 15: 7–12

    PubMed  CAS  Google Scholar 

  • Bryant RE, Jenkins DE (1968) Calcium requirement for complement dependent hemolytic reactions. J Immunol 101: 664

    PubMed  CAS  Google Scholar 

  • Bub F, Bieker P, Martin HH, Nixdorff K (1980) Immunological characterization of two major proteins isolated from the outer membrane of Proteus mirabilis. Infect Immun 27:315–321

    PubMed  CAS  Google Scholar 

  • Buchner H (1889) Über die bakterientötende Wirkung des zellfreien Blutserums. Zentralbl Bakteriol Parasitenkunde 5: 817, 6:1

    Google Scholar 

  • Campbell RD, Dodds AW, Porter RR (1980) The binding of human complement component C4 to antibody-antigen aggregates. Biochem J 189:67–80

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1980) Killing of the S-and Re-forms of Salmonella minnesota via the classical pathway of complement activation in guinea-pig and human sera. Immunology 40:547–556

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1981) Antibody-independent binding of the first component of complement (C1) and its subcomponent Clq to the S and R forms of Salmonella minnesota. Infect Immun 31:1138–1144

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1982a) The role of components of the outer membrane of gram-negative bacteria in the serum-bactericidal effect. Protides Biol Fluids Proc Colloq 29: 317–320

    Google Scholar 

  • Clas F, Loos M (1982 b) Requirement for an additional serum factor essential for antibody-independent activation of the classical complement sequence by Gram-negative bacteria. Infect Immun 37: 935–939

    PubMed  CAS  Google Scholar 

  • Clas F, Loos M (1984) Antibody-independent killing of gram-negative bacteria via the classical pathway. Behring Inst Res Commun 76:59–74

    CAS  Google Scholar 

  • Clas F, Golecki JR, Loos M (1984) Electron microscopic study showing the antibody-independent binding of Clq, a subcomponent of the first component of complement, to serum-sensitive salmonellae. Infect Immun 45:795–797

    PubMed  CAS  Google Scholar 

  • Colten HR, Bond HE, Borsos T, Rapp HJ (1969) Purification of the first component of complement by zonal ultracentrifugation. J Immunol 104:862–865

    Google Scholar 

  • Cooper NR (1973) Activation of the complement system. Top Mol Immunol 2:155–183

    CAS  Google Scholar 

  • Cooper NR, Morrison DC (1978) Binding and activation of the first component by the lipid A region of lipo-polysaccharides. J Immunol 120:1862–1868

    PubMed  CAS  Google Scholar 

  • Day NK, L’Esperance P, Good RA, Michael AF, Hansen JA, Dupont B, Jersild C (1975) Hereditary C2 deficiency: genetic studies and association with the HL-A system. J Exp Med 141:1464–1467

    Article  PubMed  CAS  Google Scholar 

  • Dierich MP, Bitter-Suermann D, König W, Hadding U, Galanos C, Rietschel ET (1973) Analysis of bypass activation of C3 by endotoxic LPS and loss of this potency. Immunology 24:721–733

    PubMed  CAS  Google Scholar 

  • Ejzemberg R, Brown EJ, Ohanian SH, Hammer C, Borsas T (1983) Cell-bound C4b resists reduction by reducing agents: analysis by chain structure and by hemolytic activity. J Immunol 130:2825–2830

    PubMed  CAS  Google Scholar 

  • Fromme I, Lüderitz O, Nowotny A, Westphal O (1958) Chemische Analyse der Lipopolysaccharide aus Salmonella abortus equi. Pharm Acta Helv 33: 391.

    PubMed  CAS  Google Scholar 

  • Also in Nowotny A (1979) Basic exercises in immunochemistry. Springer, Berlin Heidelberg New York, p 102

    Google Scholar 

  • Galanos C, Lüderitz O (1976) The role of the physical state of lipopolysaccharides in the interaction with complement. High molecular weight as prerequisite for the expression of anticomplementary activity. Eur J Biochem 65:403–408

    Article  PubMed  CAS  Google Scholar 

  • Galanos C, Rietschel ET, Lüderitz O, Westphal O (1971) Interaction of lipopolysaccharides and lipid A with complement. Eur J Biochem 19:143–150

    Article  PubMed  CAS  Google Scholar 

  • Galanos C, Lüderitz O, Rietschel ET, Westphal O (1977) Newer aspects of the chemistry and the biology of bacterial lipopolysaccharides with special reference to their lipid A component. In: Goodwin TW (ed) Biochemistry of lipids II, vol 14. University Park Press, Baltimore, pp 239–335

    Google Scholar 

  • Galdiero F, Tufano MA, Sommese L, Folgore A, Tedesco F (1984) Activation of complement system by porins extracted from S. typhimurium. Infect Immun 46:559–563

    PubMed  CAS  Google Scholar 

  • Gewurz H, Shin HS, Mergenhagen SE (1968 a) Interactions of the complement system with endotoxic lipopolysaccharide: consumption of each of six terminal complement components. J Exp Med 128: 1049–1057

    Article  PubMed  CAS  Google Scholar 

  • Gewurz H, Mergenhagen SE, Nowotny A, Philips JK (1968 b) Interactions of the complement system with native and chemically modified endotoxins. J Bacteriol 95: 397–405

    PubMed  CAS  Google Scholar 

  • Golecki JR, Oelze J (1980) Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodosspirillaceae. J Bacteriol 144:781–788

    PubMed  CAS  Google Scholar 

  • Good RA, Day SB (1977) Biological amplification systems immunology. Plenum, New York, p 146

    Google Scholar 

  • Grossmann N, Leive L (1984) Complement activation via the alternative pathway by purified salmonella lipopolysaccharide is affected by its structure but not its O-antigen length. J Immunol 132:376–385

    Google Scholar 

  • Högenauer G, Woisetschläger M (1981) A diazaborine derivative inhibits lipopolysaccharide biosynthesis. Nature 293:662–664

    Article  PubMed  Google Scholar 

  • Horwitz MA, Silverstein SC (1980) Influence of Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes. J Clin Invest 65:82–94

    Article  PubMed  CAS  Google Scholar 

  • Ihara I, Harada Y, Ihara S, Kawakami M (1982) A new complement-dependent bactericidal factor found in nonimmune mouse sera: specific binding to polysaccharide of Ra chemotype salmonella. J Immunol 128:1256–1260

    PubMed  CAS  Google Scholar 

  • Inoue K, Yonemasu K, Takamizawa A, Amano T (1968) Studies on the immune bacteriolysis. XIV. Requirement of all nine components of complement for immune bacteriolysis. Biken J 11:203–206

    PubMed  CAS  Google Scholar 

  • Inoue K, Akiyama Y, Kinoshita T, Higashi Y, Amano T (1976) Evidence for a one-hit theory in the immune bactericidal reaction and demonstration of a multi-hit response for hemolysis by streptolysin O and clostridium perfringens theta toxin. Infect Immun 13:337–344

    PubMed  CAS  Google Scholar 

  • Inoue K, Kinoshita T, Okada M, Akiyama Y (1977) Release of phospholipids from complementmediated lesions on the surface structure of Escherichia coli. J Immunol 119: 65–72

    PubMed  CAS  Google Scholar 

  • Johnston RB, Klemperer M, Alper CA, Rosen RS (1969) The enhancement of bacterial phagocytosis by serum. The role of complement components and two cofactors. J Exp Med 129:1275–1290

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982 a) Studies on the mechanism of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155: 797–808

    Article  PubMed  CAS  Google Scholar 

  • Joiner KA, Hammer CH, Brown EJ, Frank MM (1982b) Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of S. minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 155: 809–819

    Article  PubMed  CAS  Google Scholar 

  • Kawakami M, Ihara I, Suzuki A, Harada Y (1982) Properties of a new complement-dependent bactericidal factor specific for Ra chemotype Salmonella in sera of conventional and germ-free mice. J Immunol 129:2198–2201

    PubMed  CAS  Google Scholar 

  • Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasma. J Biophys Biochem Cytol 4:671–683

    Article  PubMed  CAS  Google Scholar 

  • König W, Bitter-Suermann D, Dierich MP, Limbert M, Schorlemmer HU, Hadding U (1974) DNP antigens activate the alternate pathway of the complement system. J Immunol 113:501–506

    PubMed  Google Scholar 

  • Kolb WP, Kolb LM, Podack ER (1979) C1q: isolation from human serum in high yield by affinitychromatography and development of a highly sensitive hemolytic assay. J Immunol 122: 2103–2111

    PubMed  CAS  Google Scholar 

  • Leive L, Shovlin VK, Mergenhagen SE (1968) Physical, chemical, and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate. J Biol Chem 243: 6384

    PubMed  CAS  Google Scholar 

  • Lepow IH, Neff GB, Todd EW, Pensky J, Hinz CF (1963) Chromatographic resolution of the first component of human complement into three activities. J Exp Med 117:983–1008

    Article  PubMed  CAS  Google Scholar 

  • Liang-Takasaki CJ, Mäkelä PH, Leive L (1982) Phagocytosis of bacteria by macrophages: changing the carbohydrate of lipopolysaccharide alters interaction with complement and macrophages. J Immunol 128:1229–1236

    PubMed  CAS  Google Scholar 

  • Liang-Takasaki CJ, Grossman N, Leive L (1983) Salmonellae activate complement differentially via the alternative pathway depending on the structure of their lipopolysaccharide O-antigen. J Immunol 130:1867–1871

    PubMed  CAS  Google Scholar 

  • Loos M (1982) Antibody-independent activation of Cl, the first component of complement. Am Immunol (Inst Pasteur) 133c: 165–179

    Google Scholar 

  • Loos M, Thesen R (1978) Trinitroplienylated red cells (E-TNP) as a model for antibody-independent activation of the complement system via the classical pathway. J Immunol 121:24–28

    PubMed  CAS  Google Scholar 

  • Loos M, Borsos T, Rapp HJ (1972 a) Activation of the first component of complement. Evidence for an internal activation step. J Immunol 108: 683–688

    PubMed  CAS  Google Scholar 

  • Loos M, Vadlamudis S, Meltzer M, Shifrin S, Borsos T, Goldin A (1972 b) Detection of endotoxin on commercial L-asparaginase preparations by complement fixation and separation by chromatography. Cancer Res 32: 2292–2296

    PubMed  CAS  Google Scholar 

  • Loos M, Bitter-Suermann D, Dierich M (1974) Interaction of the first (Cl), the second (C2) and the fourth (C4) component of complement with different preparations of bacterial lipopolysaccharides and with lipid A. J Immunol 112:935–940

    PubMed  CAS  Google Scholar 

  • Loos M, Wellek B, Thesen R, Opferkuch W (1978) Antibody-independent interaction of the first component of complement with Gram-negative bacteria. Infect Immun 22: 5–9

    PubMed  CAS  Google Scholar 

  • Loos M, Laurell A, Sjöholm AG, Martensson U, Berkel IA (1980) Immunochemical and functional analysis of a complete Clq deficiency in man: evidence that Clr and Cls are in the native form, and that they reassociate with purified Clq to form macromolecular Cl. J Immunol 124:59–63

    PubMed  CAS  Google Scholar 

  • Lüderitz O, Westphal O, Staub AM, Nikaido H (1971) Isolation and chemical characterization of bacterial lipopolysaccharides. In: Weinbaum G, Kadis S, Ajl SJ (eds) Microbial toxins, vol 4. Academic, New York

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Article  PubMed  CAS  Google Scholar 

  • Marcus RL, Shin HS, Mayer MM (1971) An alternative complement pathway: C3-cleaving activity not due to C4, 2a on endotoxic lipopolysaccharide after treatment with guinea-pig serum; relation to properdin. Proc Natl Acad Sci (USA) 68: 1351–1354

    Article  PubMed  CAS  Google Scholar 

  • May JE, Frank MM (1973) Hemolysis of sheep erythrocytes in pig serum deficient in the fourth component of complement. J Immunol 111:1661–1676

    CAS  Google Scholar 

  • Medicus RG, Chapuis RM (1980) The first component of complement. I. Purification and properties of native C1. J Immunol 125:390–395

    PubMed  CAS  Google Scholar 

  • Mergenhagen SE, Gewurz H, Bladen HA, Nowotny A, Kasai N, Lüderitz O (1968) Interactions of the complement system with endotoxins from a S. minnesota mutant deficient in O-polysaccharide and heptose. J Immunol 100:227–229

    PubMed  CAS  Google Scholar 

  • Moreau SC, Skarnes RC (1975) Complement mediated bactericidal system: evidence for a new pathway of complement action. Science 190:278–279

    Article  PubMed  CAS  Google Scholar 

  • Morrison DC, Kline FL (1977) Activation of the classical and properdin pathway of complement by bacterial lipopolysaccharides (LPS). J Immunol 118:362–368

    PubMed  CAS  Google Scholar 

  • Müller-Eberhard HJ, Bokisch KA, Budzko DB (1970) Studies of human anaphylatoxins and of their physiological control mechanism. In: Miescher PA (ed) Immunopathology, VIth international symposium. Grune and Stratton, New York, pp 191–200

    Google Scholar 

  • Muschel LH, Fong JSC (1977) Serum bactericidal activity and complement. In: Good RA, Day SB (eds) Biological amplification systems in immunology. Plenum, New York, p 137

    Google Scholar 

  • Muschel LH, Larsen LL (1970) The sensitivity of smooth and rough gram-negative bacteria to the immune bactericidal reaction. Proc Soc Exp Biol Med 133:345–348

    PubMed  CAS  Google Scholar 

  • Phillips JK, Snydermann R, Mergenhagen SE (1972) Activation of complement by endotoxin: a role for 2 globulin, Cl, C4 and C2 in the consumption of terminal complement components by endotoxin-coated erythrocytes. J Immunol 109:334–341

    PubMed  CAS  Google Scholar 

  • Pinckard RN, Olson MS, Kelley RE, DeHeer DH, Palmer JD, O’Rourke RA, Goldfein S (1973) Antibody-independent activation of human Cl after interaction with heart subcellular membranes. J Immunol 110:1376–1382

    PubMed  CAS  Google Scholar 

  • Rapp HJ, Borsas T (1970) Molecular basis of complement action. Appleton-Century-Croft, New York

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BL, Rowley D (1969) Sensitization of complement-resistant bacterial strains. Nature 221:1259–1261

    Article  PubMed  CAS  Google Scholar 

  • Root RK, Ellman L, Frank MM (1972) Bactericidal and opsonic properties of C4-deficient guinea pig serum. J Immunol 109:477–486

    PubMed  CAS  Google Scholar 

  • Rowley D (1968) Sensitivity of rough gram-negative bacteria to the bactericidal action of serum. J Bacteriol 95:1647–1650

    PubMed  CAS  Google Scholar 

  • Schlecht S., Westphal O (1967) Über die Herstellung von Antiserum gegen die somatischen (O-) Antigene von Salmonellen. II. Verteilung: Untersuchungen über Hämagglutinintiter. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1: Orig 205:487–501

    Google Scholar 

  • Skarnes RC (1978) Humoral bactericidal systems; anti-bactericidal potential of serum from young animals. Infect Immun 19:510–514

    PubMed  CAS  Google Scholar 

  • Sterzl J, Pesák V, Kostka J, Jilek M (1964) The relation between the bactericidal activity of complement and the character of bacterial surfaces. Folia Microbiol (Praha) 9:284–298

    Article  Google Scholar 

  • Tenner AJ, Ziccardi RJ, Cooper NR (1983) Antibody-independent Cl-activation: E. coli strains demonstrated differences in the kinetics and control of Cl activation and in the fate of the activated Cl. Immunbiologie 164: 306

    Google Scholar 

  • Tenner AJ, Ziccardi RJ, Cooper NR (1984) Antibody-independent Cl activation by E. coli. J Immunol 133:886–891

    PubMed  CAS  Google Scholar 

  • Traub WH, Kleber J (1976) Selective activation of classical and alternative pathways of human complement by “promptly serum-sensitive ”and “delayed serum-sensitive” strains of Serratia marcescens. Infect Immun 13:1343–1346

    PubMed  CAS  Google Scholar 

  • Volanakis JE, Stroud RM (1972) Rabbit Clq purification, functional and structural studies. J Immunol Methods 2:25–34

    Article  PubMed  CAS  Google Scholar 

  • Watson ML (1958) Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol 4:475–478

    Article  PubMed  CAS  Google Scholar 

  • Wilson AB, Prichard-Thomas S, Lachmann PJ, Coombs RRA (1980) Receptors on guinea-pig erythrocytes specific for cell-bound fourth component of human complement (C4). Immunology 39:195–202

    PubMed  CAS  Google Scholar 

  • Ziccardi RJ (1981) Activation of the early components of the classical complement pathway under physiologic conditions. J Immunol 126:1773–1796

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Clas, F., Schmidt, G., Loos, M. (1985). The Role of the Classical Pathway for the Bactericidal Effect of Normal Sera Against Gram-Negative Bacteria. In: Loos, M. (eds) Bacteria and Complement. Current Topics in Microbiology and Immunology, vol 121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45604-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45604-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45606-0

  • Online ISBN: 978-3-642-45604-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics