Skip to main content

Periodic Growth Phenomena in Spatially Organized Microbial Systems

  • Conference paper
Modelling of Patterns in Space and Time

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 55))

Abstract

Modern microbiology has as one of its sacred cows the pursuit of the homogeneity paradigm. This, roughly speaking, implies that respectable research uses well mixed liquid cultures preferably operating under steady state conditions. Fortunately there are signs that this attitude is beginning to change, for natural ecosystems are seldom homogeneous and operate in the short term at far from steady state conditions. Life for the “heterogeneous” microbiologist is infinitely richer and more satisfying once one starts to appreciate the regularity and order that is possible in a spatially ordered three dimensional environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, J. (1966), Chemotaxis in bacteria, Science, 153, 708–716.

    Article  Google Scholar 

  • Crank, J. (1975), The mathematics of diffusion, 2nd edition, Clarendon Press, Oxford.

    Google Scholar 

  • De Vries, W. & Stouthamer, A.H. (1969), Factors determining the degree of anaerobiosis of Bifidobacterium strains, Archiv für Mikrobiologie, 65, 275–287.

    Article  Google Scholar 

  • Flicker, M. and Ross, J. (1974), Mechanism of chemical instability for periodic precipitation phenomena, Journal of Chemistry and Physics, 60, 3458–3465.

    Article  Google Scholar 

  • Hedges, E.S. (1932), Liesegang rings and other periodic structures, Chapman and Hall, London.

    Google Scholar 

  • Hinshelwood, C.N. (1946), The chemical kinetics of the bacterial cell, Clarendon Press, Oxford.

    Google Scholar 

  • Hoppensteadt, F.C. and Jager, W. (1979), Pattern formation by bacteria, in Biological growth and spread, edited by W. Jager, H. Rost and P. Taylor, 38, 68–81, Springer-Verlag Lecture Notes in Biomathematics, Berlin, New York.

    Google Scholar 

  • Meinhardt, H. and Gierer, A. (1974), Applications of a theory of biological pattern formation based on lateral inhibition, Journal of Cell Science, 15, 321–346.

    Google Scholar 

  • Newell, P.C. (1983), Attraction and adhesion in the slime mold Dictyostelium, in Fungal Differentiation edited by J.E. Smith, pp43–71, Marcel Dekker, New York.

    Google Scholar 

  • Nitsch, B. & Kutzner, H.J. (1973), Wachstum von Streptomycetin in Schuttelagarkultur: eine neue Methode zur Feststellung des c-Quellen-Spektrums, Symposium on Technische Mikrobiologie, Berlin, 481-486.

    Google Scholar 

  • Ostwald, W. (1925), Kolloid Zeitung, 36, 380.

    Article  Google Scholar 

  • Perfil’ev, B.V. & Gabe, D.R. (1969), Capillary Methods of Investigating Microorganisms, (English translation). Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Pirt S.J. (1975), Principles of microbe and cell cultivation, Blackwell, Oxford.

    Google Scholar 

  • Prager, S. (1956), Periodic precipitation, Journal of Chemistry and Physics, 25, 279–283.

    Article  Google Scholar 

  • Pringsheim, H. (1910), Weiteres über Verwendung von Cellulose als Energiequelle zur Assimilation des Luftstickstoffs, Centralblatt für Bakteriologie und Parasitenkunde, Abteil II, 26, 222–227.

    Google Scholar 

  • Rowbury, R.J., Armitage, J.P. and King, C. (1983), Movement, taxes and cellular interactions in the response of microorganisms to the natural environment, in Microbes in their Natural Environment, Symposium of the Society for General Microbiology, 34, 299–350.

    Google Scholar 

  • Smith, D.G. (1972), The Proteus swarming phenomenon, Science Progress, Oxford, 60, 487.

    Google Scholar 

  • Spray, R.S. (1936), Semisolid media for the cultivation and identification of the sporulating anaerobes, Journal of Bacteriology, 32, 135–155.

    Google Scholar 

  • Tschapek, M & Giambiagi, N (1954), The formation of Liesegang rings by Azotobacter under oxygen inhibition. / Die Bildung von Liesegang’schen Ringen durch Azotobakter bei 02-Hemmung, Kolloid Zeitschrift, 135, 47–48.

    Article  Google Scholar 

  • Wagner, C.J. (1950), Mathematical analysis of the formation of periodic precipitates, Journal of Colloid Science, 5, 85–97.

    Article  Google Scholar 

  • Whittenbury, R. (1963), The use of soft agar in the study of conditions affecting the utilization of fermentable substrates by lactic acid bacteria, Journal of General Microbiology, 32, 375–384.

    Google Scholar 

  • Williams, F.D. & Schwarzhoff, R.H. (1978), Nature of the swarming phenomenon in Proteus, Annual Review of Microbiology, 32, 101–122.

    Article  Google Scholar 

  • Williams, J.W. (1938a), Bacterial growth “spectrum” analysis. I. Methods and application, The American Journal of Medical Technology, 4, 58–61.

    Google Scholar 

  • Williams, J.W. (1938b), Bacterial growth “spectrums”. II. Their significance in pathology and bacteriology, American Journal of Medical Technology, 14, 642–645.

    Google Scholar 

  • Williams, J.W. (1939a), Growth of microorganisms in shake cultures under increased oxygen and carbon dioxide tensions, Growth, 3, 21–33.

    Google Scholar 

  • Williams, J.W. (1939b), The nature of gel mediums as determined by various gas tensions and its importance in growth of microorganisms and cellular metabolism, Growth, 3, 181–196.

    Google Scholar 

  • Wimpenny, J.W.T., Lovitt, R.W. and Coombs, J.P. (1983), Laboratory model systems for the investigation of spatially and temporally organised microbial ecosystems, Symposia of the Society for General Microbiology, 34, 67–117.

    Google Scholar 

  • Wimpenny, J.W.T. & Whittaker, S. (1979), Microbial growth in gel stabilised nutrient gradients, Society for General Microbiology Quarterly, 6, 80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wimpenny, J.W.T., Jaffe, S., Coombs, J.P. (1984). Periodic Growth Phenomena in Spatially Organized Microbial Systems. In: Jäger, W., Murray, J.D. (eds) Modelling of Patterns in Space and Time. Lecture Notes in Biomathematics, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45589-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45589-6_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13892-1

  • Online ISBN: 978-3-642-45589-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics