Advertisement

Global Minimization of a Difference of Two Convex Functions

  • Hoang Tuy
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 226)

Abstract

The problem to be addressed in this paper is that of finding the global minimum of a difference of two given convex functions: \({x_{n_2 } \in R^{n_1 } ,}\), over a given polyhedral convex set in \(R^{n_1 } x\,R^{n_2 } \).

Keywords

Master Problem Convex Program Bender Decomposition Polyhedral Convex Concave Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    E. Balas. Nonconvex quadratic programming via generalized polars. SIAM J. Appl. Math. 28 (1975), 335–349.CrossRefGoogle Scholar
  2. /2/.
    A.V. Cabot, R.L. Francis. Solving certain nonconvex quadratic minimization problems by ranking extreme points. Opns. Res. 18 (1970), 82–86.CrossRefGoogle Scholar
  3. /3/.
    J.E. Falk, R.M. Soland. An algorithm for separable nonconvex programming problems. Management Science 15 (1969), 550–569.CrossRefGoogle Scholar
  4. /4/.
    A. Geoffrion. Generalized Benders decompositions. J. Optim. Theory Appl. 10 (1972), 237–260.CrossRefGoogle Scholar
  5. /5/.
    L.A. Istomin. A modification of H. Tuy’s method for minimizing a concave function over a polytope. Ž. Vyčisl. Mat, i. Mat. Fiz. 17 (1977), 1592–1597 (Russian).Google Scholar
  6. /6/.
    H. Konno. Maximization of a convex quadratic function under linear constraints. Math. Programming 11 (1976), 117–127.CrossRefGoogle Scholar
  7. /7/.
    Paul F. Kough. The indefinite quadratic programming problem. Opns. Res. 27 (1979), 516–533.CrossRefGoogle Scholar
  8. /8/.
    P.A. Meyer. Probabilités et potentiels. Herman. Paris 1966.Google Scholar
  9. /9/.
    B.M. Mukhamediev. Approximate method for solving concave programming problems. Ž. Vyčisl. Mat. i Mat. Fiz. 22 (1982), 727–732 (Russian).Google Scholar
  10. /10/.
    K. Ritter. A method for solving maximum problems with a nonconcave quadratic objective function. Z. Wahrscheinlichkeitstheor. Verw. Geb. 4 (1966), 340–351.CrossRefGoogle Scholar
  11. /11/.
    R.T. Rockafellar. Convex analysis. Princeton University Press 1970.Google Scholar
  12. /12/.
    J.B. Rosen. Global minimization of a linearly constrained concave function by partition of feasible domain. Math. Oper. Res. (to appear).Google Scholar
  13. /13/.
    J.B. Rosen. Parametric global minimization for large scale problems. Math. Oper. Res. (to appear).Google Scholar
  14. /14/.
    K. Tammer. Möglichkeiten zur Anwendung der Erkenntnis der parametrischen Optimierung für die Lösung indefiniter quadratischer Optimierungsprobleme. Math. Operationsforsch. u. Statist. 7 (1976), 209–222.CrossRefGoogle Scholar
  15. /15/.
    Ng. v. Thoai, H. Tuy. Convergent algorithms for minimizing a concave function. Math. Oper. Res. 5 (1980), 556–566.CrossRefGoogle Scholar
  16. /16/.
    H. Tuy. Concave programming under linear constraints. Doklady Akad. Nauk 159 (1964), 32–35. Translated Soviet Math. 5 (1964), 1437-1440.Google Scholar
  17. /17/.
    H. Tuy. The Farkas-Minkowski theorem and extremum problems. In the book “Mathematical Models in Economics”, J. Loś and M.W. Loś eds. Warszawa 1974, 379-400.Google Scholar
  18. /18/.
    H. Tuy. Global maximization of a convex function over a closed, convex, not necessarily bounded set. Cahiers de Mathématiques de la Décision. No. 8223 CEREMADE. Université Paris-Dauphine. 1982.Google Scholar
  19. /19/.
    H. Tuy. Improved algorithm for solving a class of global minimization problems. Preprint. Institute of Mathematics, Hanoi 1983.Google Scholar
  20. /20/.
    H. Tuy. On outer approximation methods for solving concave minimization problems. Submitled to Acta Math. Vietnamica 1983.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Hoang Tuy
    • 1
  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations