Linear Ordinary Differential Equations

  • Hermann Haken
Part of the Springer Series in Synergetics book series (SSSYN, volume 20)


In this chapter we shall present a systematic study of the solutions of linear ordinary differential equations. Such equations continue to play an important role in many branches of the natural sciences and other fields, e.g., economics, so that they may be treated here in their own right. On the other hand, we should not forget that our main objective is to study nonlinear equations, and in the construction of their solutions the solutions of linear equations come in at several instances.


Lyapunov Exponent Periodic Function Linear Differential Equation Solution Matrix Solution Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Groups and InvarianceGoogle Scholar
  2. E. C. G. Sudarshan, M. Mukunda: Classical Dynamics: A Modern Perspective (Wiley, New York 1974)zbMATHGoogle Scholar
  3. R. D. Richtmyer: Principles of Advanced Mathematical Physics II (Springer, Berlin, Heidelberg, New York 1981)zbMATHGoogle Scholar
  4. Pathways to Self-OrganizationGoogle Scholar
  5. Self-Organization Through Change of Control ParametersGoogle Scholar
  6. H. Haken: Synergetics, Springer Ser. Synergetics, Vol. 1, 3rd. ed. (Springer, Berlin, Heidelberg, New York 1983)Google Scholar
  7. Self-Organization Through Change of Number of ComponentsGoogle Scholar
  8. H. Haken: Prog. Theor. Phys. Suppl. 69, 30 (1980)MathSciNetADSCrossRefGoogle Scholar
  9. H. Haken: Unpublished materialGoogle Scholar
  10. O. Duffing: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung (Vieweg, Braunschweig 1918)zbMATHGoogle Scholar
  11. C. Hayashi: Nonlinear Oscillations in Physical Systems (McGraw-Hill, New York 1964) compare Sect. 2.1.1 alsozbMATHGoogle Scholar
  12. R. Bellman, K. L. Cooke: Introduction to Matrix Analysis (McGraw-Hill, New York 1960)zbMATHGoogle Scholar
  13. N. Dunford, J. T. Schwartz: Linear Operators, Pure and Applied Mathematics, Vol. VII, Parts I-III (Wiley, Interscience, New York 1957)Google Scholar
  14. Theorem on vanishing Lyapunov exponents: H. Haken: Phys. Lett. 94A, 71 (1983)MathSciNetADSGoogle Scholar
  15. E. A. Coddington, N. Levinson: Theory of Ordinary Differential Equations (McGraw-Hill, New York 1955)zbMATHGoogle Scholar
  16. G. Floquet: Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Ser. 2 12, 47 (1883)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Hermann Haken
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Fed. Rep. of Germany

Personalised recommendations