Skip to main content

Mechanisms of Electron-Stimulated Desorption

  • Conference paper
Desorption Induced by Electronic Transitions DIET I

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 24))

Abstract

The various phenomena associated with the desorption of neutral and ionic species from surfaces under bombardment by electrons, generally in the 10–300 eV range, are collectively known as ESD (electron-stimulated desorption) or EID (electron-impact desorption). Related effects, for instance, the rearrangement of adsorbates under electron impact or the ejection of weakly bound species by direct momentum transfer from electron des orbed atoms or molecules are also included. The excitation processes and the subsequent evolutions of the substrate-adsorbate systems on excited state potential hypersurfaces are of great intrinsic interest and can illuminate aspects of bonding at surfaces hard to study by other means. ESD also serves as a probe of different binding states, since desorption cross sections and products are sensitive to the details of adsorption. Finally ESD and the closely related photon stimulated desorption (PSD) are of technological importance, for instance in plasma-wall interactions in fusion reactors of the Tokamak type.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Plumlee and L.P. Smith, J. App. Phys. 21, 811 (1950)

    Article  CAS  Google Scholar 

  2. J.R. Young, J. App. Phys, 31, 921 (1960)

    Article  CAS  Google Scholar 

  3. G.E. Moore, J. App. Phys. 32, 1241 (1961)

    Article  CAS  Google Scholar 

  4. P.E. Redhead, Can. J. Phys. 42, 886 (1964)

    Article  CAS  Google Scholar 

  5. D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964)

    Article  CAS  Google Scholar 

  6. J.J. Czyzewski, T.E. Madey and J.T. Yates, Phys. Rev. Lett. 32, 777 (1974)

    Article  CAS  Google Scholar 

  7. P.J. Feibelman and M.L. Knotek, Phys. Rev. B18, 6531 (1978)

    Google Scholar 

  8. C. Leung, Ch. Steinbrüchel and R. Gomer, App. Phys. 14, 79 (1977)

    Article  CAS  Google Scholar 

  9. Q.-J. Zhang and R. Gomer, to be published

    Google Scholar 

  10. C. Leung, M. Vass and R. Gomer, Surf. Sci. 66, 67 (1977)

    Article  CAS  Google Scholar 

  11. T.E. Madey and J.T. Yates, J. Vac. Sci. Tech. 8, 525 (1971)

    Article  CAS  Google Scholar 

  12. D.E. Ramaker, C.T. White and J.S. Murday, J. Vac. Sci. Tech. 18, 748 (1981)

    Article  Google Scholar 

  13. P.J. Feibelman, Surf. Sci. 102, L51 (1981)

    Article  CAS  Google Scholar 

  14. W. Brenig, this volume

    Google Scholar 

  15. K.F. Freed, to be published

    Google Scholar 

  16. P. Antoniewicz, Phys. Rev. B21, 3811 (1980)

    Google Scholar 

  17. Q.-J. Zhang and R. Gomer, Surf. Sci. 109, 567 (1981)

    Article  CAS  Google Scholar 

  18. M.B. Webb, private communication

    Google Scholar 

  19. J. Kirschner, D. Menzel and P. Staib, Surf. Sci. 87, L267 (1979)

    Article  CAS  Google Scholar 

  20. R. Franchy and D. Menzel, Phys. Rev. Lett. 43, 865 (1979)

    Article  CAS  Google Scholar 

  21. I.G. Newsham and D.R. Sandstrom, J. Vac. Sci. Tech. 10, 39 (1973)

    Article  CAS  Google Scholar 

  22. C. Kohrt and R. Gomer, J. Chem. Phys. 52, 3283 (1970)

    Article  CAS  Google Scholar 

  23. T. Engel, H. Niehus and E. Bauer, Surf. Sci. 52, 237 (1975)

    Article  CAS  Google Scholar 

  24. Q.-J. Zhang and R. Gomer, to be published

    Google Scholar 

  25. S.-L. Weng, Phys. Rev. B23, 1699 (1981). This author lists considerably lower values of onset ion kinetic energy than [24]; the values of [24] are used in Table 2

    Google Scholar 

  26. R. Opila and R. Gomer, unpublished, using an He resonance lamp and hv = 40.8 eV. There is a slight possibility that intensity at εF-20 eV is masked by He (I) generated photoelectrons

    Google Scholar 

  27. Ch. Park, M. Kramer and E. Bauer, Surf. Sci. 109, L533 (1981)

    Article  CAS  Google Scholar 

  28. D.P. Woodruff, M. Traum, H.H. Farrel, N.V. Smith. P.D. Johnson, D.A. King, R.L. Benbow and Z. Huryeh, Phys. Rev. B21, 5642 (1980)

    Google Scholar 

  29. S.-L. Weng, Phys. Rev. B23, 3788 (1981)

    Google Scholar 

  30. E.W. Plummer, B.J. Waclawski, T.V. Vorburger and C.E. Kuyatt, Prog. Surf. Sci. 7, 149 (1976)

    Article  CAS  Google Scholar 

  31. R. Opila and R. Gomer, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomer, R. (1983). Mechanisms of Electron-Stimulated Desorption. In: Tolk, N.H., Traum, M.M., Tully, J.C., Madey, T.E. (eds) Desorption Induced by Electronic Transitions DIET I. Springer Series in Chemical Physics, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45550-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45550-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45552-0

  • Online ISBN: 978-3-642-45550-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics