Advertisement

Optimal Bilinear Control Theory Applied to Pest Management

  • Kwang Y. Lee
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 162)

Abstract

The purpose of the paper is to visualize ecological systems as bilinear control systems and to categorize existing optimal bilinear control theory applied to the management of pest populations. Both lumped bilinear control model describing total number of populations and distributed bilinear control model representing the age distribution of a population are developed. Optimal bilinear control strategies are given as solutions of two-point boundary value problems.

Keywords

Biological Control Agent Boundary Control Pest Population Bilinear System Uncertain Parameter Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khailov, K. M. (1967). Yearb. Soc. Gen. Sys. Res. 12, 29.Google Scholar
  2. 2.
    Spanner, D. C. (1964). Introduction to the Thermodynamics, Academic Press, London and New York.Google Scholar
  3. 3.
    Watt, K. E. F. (1966). In Systems Analysis in Ecology. (K.E.F. Ed.) McGraw-Hill, New York.Google Scholar
  4. 4.
    Lassiter, R. R. and Hayne, D. W., “A finite difference model for simulation of dynamic processes in ecosystems”, in Systems Analysis and Simulation in Ecology, Vol. 1, (B. D. Batten, Ed.), McGraw-Hill, New York and London.Google Scholar
  5. 5.
    Bellman, R., “Large Systems”, guest editorial, IEEE Trans. Automat. Contr., AC-19:5, p. 465, October 1974.CrossRefGoogle Scholar
  6. 6.
    Holling, C. S., “Principles of insect predation”, Ann. Rev. Ent. 6, 163–182, 1961.CrossRefGoogle Scholar
  7. 7.
    Hald, A., Statistical Theory and Engineering Applications, Wiley, New York, 1952.Google Scholar
  8. 8.
    Malthus, T. R., An Essay on the Principles of Population as it Affects the Future Improvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Conducet and Other Writers, Printed for J. Johnson in St. Paul Church Yard, London, 1798.Google Scholar
  9. 9.
    Pearl, R., Studies in Human Biology, Williams and Wilkins, Baltimore, 1924.Google Scholar
  10. 10.
    Verhulst, P. F., Researches mathematiques sur la loi d’accroissement de la population, Mem. da l’Acad. Roy. de Bruxelles T, 18. 1–58, 1844.Google Scholar
  11. 11.
    Lotka, A. J., Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925.Google Scholar
  12. 12.
    Volterra, V., Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Gantheir-Villas, Paris, 1931.Google Scholar
  13. 13.
    Mohler, R. R., Bilinear Control Processes, McGraw-Hill, New York and London, 1973.Google Scholar
  14. 14.
    Lee, K. Y., Barr, R. O., Gage, S. H., and Kharkar, A. N., “Formulation of a mathematical model for insect pest ecosystems—the cereal leaf beetle problem”, J. Theoretical Biology, 1976, 59, 33–76.CrossRefGoogle Scholar
  15. 15.
    Barr, R. O., Lee, K. Y., et al., “Ecologically and economically compatible pest control”, Insects: Studies in Population Management, Ecological Soc. Australia, Memoirs 1, Canberra, 1973, 241-264.Google Scholar
  16. 16.
    Leslie, P. H., “On the use of matrices in certain population mathematics”, Biometrika, 33, 183–212, 1945.CrossRefGoogle Scholar
  17. 17.
    Newsom, L. D., “Essential role of chemicals in crop protection”, Proc. FAO Symp. on Integrated Pest Control, Rome, Italy, 1965.Google Scholar
  18. 18.
    LeRoux, E. J., “Effects of modified and commercial spray programs on the fauna of apple orchards in Quebec”, Ann. Ent. Soc. Quebec. 6. 1960, 87–121.Google Scholar
  19. 19.
    Watson, T. F., Arant, F. S., et al., “Effect of several insecticides and applications on cotton insect control”, Auburn Univ., Agr. Expt. Sta. Prog. Rept. Ser. No. 88, 1965.Google Scholar
  20. 20.
    Becker, N. G., “Control of a pest population”, Biometrics, 26, 1970, 365–374.CrossRefGoogle Scholar
  21. 21.
    Athans, M. and Falb, P. L., Optimal Control, McGraw-Hill, New York, 1966.Google Scholar
  22. 22.
    Cliff, E. M. and Vincent, T. L., “An optimal policy for a fish harvest”, J. Opt. Theory and Appl., 12, 1973, 485–496.CrossRefGoogle Scholar
  23. 23.
    Vincent, T. L., Cliff, E. M., and Goh, B. S., “Optimal direct control programs for a prey-predator system”, Joint Autom. Contr. Conf., 1973.Google Scholar
  24. 24.
    Goh, B. S., Leitman, G., and Vincent, T. L., “Optimal control of a prey-predator system”, Math. Bio. Sci., 19, 1974, 263–286.CrossRefGoogle Scholar
  25. 25.
    Lee, K. Y., “Optimal coefficient control of distributed parameter systems”, Proc. IEEE Conf. on Decision and Control, pp. 366-370, 1975.Google Scholar
  26. 26.
    Thau, F. E., “On the feedback control of nonlinear population dynamics”, IEEE Trans. Sys. Man and Cybemetrics, SMC-2, 430–433, 1972.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Kwang Y. Lee
    • 1
  1. 1.Department of Electrical EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations