Adaptive Cognitive Rehabilitation

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 536)

Abstract

Since the emergence of computers, it has been recognized that they might play a role in brain rehabilitation efforts. However, the complexity of cognitive skills combined with the challenges of translating into software the skilled, therapeutic activities relating to rehabilitation of brain injury have prevented real breakthroughs in the area of relearning and retraining of cognitive abilities. The real potential of advanced technology has so far not been unleashed in current implementations of training resulting in lack of long-term efficacy and generalization of training. This paper will attempt to provide an overview of some the challenges facing anyone entering the exiting field of training for cognitive recovery and propose a way forward for future cognitive rehabilitation using advanced computer technology.

Keywords

Cognitive rehabilitation Adaptive training Artificial intelligence Experience-based plasticity Computer-based training 

References

  1. 1.
    Hebb, D.O.: The Organization of Behaviour: A Neuropsychological Theory. Wiley, New York (1949)Google Scholar
  2. 2.
    Cramer, S.C., et al.: Harnessing neuroplasticity for clinical applications. Brain 134, 1591–1609 (2011)CrossRefGoogle Scholar
  3. 3.
    Abbott, L.F., Nelson, S.B.: Synaptic plasticity: taming the beast. Nat. Neurosci. 3(11), 1178–1183 (2000)CrossRefGoogle Scholar
  4. 4.
    Rosenzweig, M.R., Bennett, E.L.: Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav. Brain Res. 78(1), 57–65 (1996)CrossRefGoogle Scholar
  5. 5.
    Thimm, M., et al.: Impact of alertness training on spatial neglect: a behavioural and fMRI study. Neuropsychologia 44(7), 1230–1246 (2006)CrossRefGoogle Scholar
  6. 6.
    McClelland, J.L., Rumelhart, D.E.: Distributed memory and the representation of general and specific information. J. Exp. Psychol. Gen. 114(2), 159–188 (1985)CrossRefGoogle Scholar
  7. 7.
    Robertson, I.H., Murre, J.M.J.: Rehabilitation of brain damage: brain plasticity and principles of guided recovery. Psychol. Bull. 125(5), 544–575 (1999)CrossRefGoogle Scholar
  8. 8.
    Kleim, J.A., Jones, T.A.: Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51(1), S225–S239 (2008)CrossRefGoogle Scholar
  9. 9.
    Sundhedsstyrelsen.: Hjerneskaderehabilitering-en medicinsk teknologivurdering in Medicinsk Teknologivurdering. In Hørder, M., Beck, M., Andersen, S.E. (eds.). Sundhedstyrelsen: København (2011)Google Scholar
  10. 10.
    Redding, G.M., Wallace, B.: Prism adaptation and unilateral neglect: review and analysis. Neuropsychologia 44(1), 1–20 (2006)CrossRefGoogle Scholar
  11. 11.
    Redding, G.M., Rossetti, Y., Wallace, B.: Applications of prism adaptation: a tutorial in theory and method. Neurosci. Biobehav. Rev. 29(3), 431–444 (2005)CrossRefGoogle Scholar
  12. 12.
    Ramachandran, V.S., Hirstein, W.: The perception of phantom limbs. The DO Hebb lecture. Brain 121(9), 1603–1630 (1998)CrossRefGoogle Scholar
  13. 13.
    Ramachandran, V.S., Rogers-Ramachandran, D.: Synaesthesia in phantom limbs induced with mirrors. In: Proceedings of Biological Sciences, vol. 263(1369), pp. 377–386 (1996)Google Scholar
  14. 14.
    Pulvermüller, F., Berthier, M.L.: Aphasia therapy on a neuroscience basis. Aphasiology 22(6), 563–599 (2008)CrossRefGoogle Scholar
  15. 15.
    Taub, E.: Harnessing brain plasticity through behavioral techniques to produce new treatments in neurorehabilitation. Am. Psychol. 59(8), 692–704 (2004)CrossRefGoogle Scholar
  16. 16.
    Taub, E., Uswatte, G.: Constraint-induced movement therapy: answers and questions after two decades of research. NeuroRehabilitation 21(2), 93–95 (2006)Google Scholar
  17. 17.
    Duffau, H.: Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J. Clin. Neurosci. 13(9), 885–897 (2006)CrossRefGoogle Scholar
  18. 18.
    Meinzer, M., Breitenstein, C.: Functional image studies of treatment-induced recovery in chronic aphasia. Aphasiology 22(12), 1251–1268 (2008)CrossRefGoogle Scholar
  19. 19.
    Meinzer, M., et al.: Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage 39(4), 2038–2046 (2008)CrossRefGoogle Scholar
  20. 20.
    Pulvermüller, F., et al.: Constraint-induced therapy of chronic aphasia after stroke. Stroke 2001(32), 1621–1626 (2001)CrossRefGoogle Scholar
  21. 21.
    Taub, E., Uswatte, G., Pidikiti, R.: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J. Rehabil. Res. Dev. 36(3), 237–251 (1999)Google Scholar
  22. 22.
    Breier, J.I., et al.: Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: a case study. Neurocase 13(3), 169–177 (2007)CrossRefGoogle Scholar
  23. 23.
    Maher, L.M., et al.: A pilot study of use-dependent learning in the context of constraint induced language therapy. J. Int. Neuropsychol. Soc. 12(6), 843–852 (2006)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Sterr, A., Saunders, A.: CI therapy distribution: theory, evidence and practice. NeuroRehabilitation 21(2), 97–105 (2006)Google Scholar
  25. 25.
    Nudo, R.J., Plautz, E.J., Frost, S.B.: Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24(8), 1000–1019 (2001)CrossRefGoogle Scholar
  26. 26.
    Fernandez-Ruiz, J., et al.: Rapid topographical plasticity of the visuomotor spatial transformation. J. Neurosci. 26(7), 1986–1990 (2006)CrossRefGoogle Scholar
  27. 27.
    Gauthier, L.V., et al.: Remodeling the brain—plastic structural brain changes produced by different motor therapies after stroke. Stroke 39(5), 1520–1525 (2008)CrossRefGoogle Scholar
  28. 28.
    Ward, N.S.: Neural plasticity and recovery of function. In: Laureys S. (ed.) Boundaries of Consciousness: Neurobiology and Neuropathology, pp. 527–535. Elsevier Science Bv, Amsterdam (2005)Google Scholar
  29. 29.
    Mogensen, J., Malá, H.: Post traumatic functional recovery and reorganization in animal models: a theoretical and methodological challenge. Scand. J. Psychol. 50(6), 561–573 (2009)CrossRefGoogle Scholar
  30. 30.
    Mogensen, J.: Reorganization of the injured brain: Implications for studies of the neural substrate of cognition. Front. Psychol. 2:7 (2011). doi:10.3389/fpsyg.2011.00007
  31. 31.
    Mogensen, J.: Almost unlimited potentials of a limited neural plasticity. J. Conscious. Stud. 7(8), 13–45 (2011)Google Scholar
  32. 32.
    Atkinson, R.C., Wilson, H.A.: Computer-assisted instruction. Science 162(3849), 73–77 (1968)CrossRefGoogle Scholar
  33. 33.
    Robertson, I.: Does computerized cognitive rehabilitation work? A review. Aphasiology 4(4), 381–405 (1990)CrossRefGoogle Scholar
  34. 34.
    Robertson, I.H.: Setting goals for cognitive rehabilitation. Curr. Opin. Neurol. 12(6), 703–708 (1999)CrossRefGoogle Scholar
  35. 35.
    Ting, D.S.J., et al.: Visual neglect following stroke: current concepts and future focus. Surv. Ophthalmol. 56(2), 114–134 (2011)CrossRefGoogle Scholar
  36. 36.
    Myers, R.L., Laenger, C.J.: Virtual reality in rehabilitation. Disabil. Rehabil. 20(3), 111–112 (1998)CrossRefGoogle Scholar
  37. 37.
    Rizzo, A.A., Buckwalter, J.G., Neumann, U.: Virtual reality and cognitive rehabilitation: a brief review of the future. J. Head Trauma Rehabil. 12(6), 1–15 (1997)CrossRefGoogle Scholar
  38. 38.
    Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8(3), 241–262 (2005). discussion 263–71CrossRefGoogle Scholar
  39. 39.
    Tsirlin, I., et al.: Uses of virtual reality for diagnosis, rehabilitation and study of unilateral spatial neglect: review and analysis. CyberPsychol. Behav. 12(2), 175–181 (2009)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Katz, R.C., Nagy, V.T.: A computerized treatment system for chronic aphasic patients. In: Clinical Aphasiology Conference, BRK Publishers, Oshkosh (1982)Google Scholar
  41. 41.
    Mills, R.H.: Microcomputerized auditory comprehension training. In: 12th Clinical Aphasiology Conference, BRK Publishers, Oshkosh, 6–10 June 1982Google Scholar
  42. 42.
    Loverso, F.L., et al.: The application of microcomputers for the treatment of aphasic adults. In: Clinical Aphasiology Conference, Ashland, BRK Publishers (1985)Google Scholar
  43. 43.
    Dick, R.J., et al.: Programmable visual display for diagnosing, assessing and rehabilitating unilateral neglect. Med. Biol. Eng. Comput. 25(1), 109–111 (1987)CrossRefGoogle Scholar
  44. 44.
    Katz, R.C., Nagy, V.T. A computerized approach for improving word recognition in chronic aphasic patients. In: Clinical Aphasiology Conference, BRK Publishers, Phoenix (1983)Google Scholar
  45. 45.
    Bergego, C., et al.: Rehabilitation of unilateral neglect: A controlled multiple-baseline-across-subjects trial using computerised training procedures. Neuropsychol. Rehabil. 7(4), 279–293 (1997)CrossRefGoogle Scholar
  46. 46.
    Robertson, I., Gray, J., McKenzie, S.: Microcomputer-based cognitive rehabilitation of visual neglect: three multiple-baseline single-case studies. Brain Inj. 2(2), 151–163 (1988)CrossRefGoogle Scholar
  47. 47.
    Robertson, I.H., et al.: microcomputer-based rehabilitation for unilateral left visual neglect: a randomized controlled trial. Arch. Phys. Med. Rehabil. 71(9), 663–668 (1990)Google Scholar
  48. 48.
    Middleton, D.K., Lambert, M.J., Seggar, L.B.: Neuropsychological rehabilitation: microcomputer-assisted treatment of brain-injured adults. Percept. Mot. Skills 72(2), 527–530 (1991)CrossRefGoogle Scholar
  49. 49.
    Katz, R.C.: Application of computers to the treatment of US veterans with aphasia. Aphasiology 23(9), 1116–1126 (2009)CrossRefGoogle Scholar
  50. 50.
    Rizzo, A.A., et al.: Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 14(1–2), 207–239 (2004)CrossRefGoogle Scholar
  51. 51.
    Anton, H.A., et al.: Visual neglect and extinction: a new test. Arch. Phys. Med. Rehabil. 69(12), 1013–1016 (1988)Google Scholar
  52. 52.
    Liang, Y.Q., et al.: A computer-based quantitative assessment of visuo-spatial neglect using regression and data transformation. Pattern Anal. Appl. 13(4), 409–422 (2010)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Potter, J., et al.: Computer recording of standard tests of visual neglect in stroke patients. Clin. Rehabil. 14(4), 441–446 (2000)CrossRefGoogle Scholar
  54. 54.
    Rabuffetti, M., et al.: Touch-screen system for assessing visuo-motor exploratory skills in neuropsychological disorders of spatial cognition. Med. Biol. Eng. Comput. 40(6), 675–686 (2002)CrossRefGoogle Scholar
  55. 55.
    Rengachary, J., et al.: Is the posner reaction time test more accurate than clinical tests in detecting left neglect in acute and chronic stroke? Arch. Phys. Med. Rehabil. 90(12), 2081–2088 (2009)CrossRefGoogle Scholar
  56. 56.
    Baheux, K., et al.: Virtual reality pencil and paper tests for neglect: a protocol. CyberPsychol. Behav. 9(2), 192–195 (2006)CrossRefGoogle Scholar
  57. 57.
    Baheux, K., et al.: Diagnosis and rehabilitation of hemispatial neglect patients with virtual reality technology. Technol. Health Care 13(4), 245–260 (2005)Google Scholar
  58. 58.
    Broeren, J., et al.: Neglect assessment as an application of virtual reality. Acta Neurol. Scand. 116(3), 157–163 (2007)CrossRefGoogle Scholar
  59. 59.
    Donnelly, N., et al.: Developing algorithms to enhance the sensitivity of cancellation tests of visuospatial neglect. Behav. Res. Methods Instrum. Comput. 31(4), 668–673 (1999)CrossRefGoogle Scholar
  60. 60.
    Guest, R., et al.: Using image analysis techniques to analyze figurecopying performance of patients with visuospatial neglect and control groups. Behav. Res. Methods Instrum. Comput. 36(2), 347–354 (2004)CrossRefMathSciNetGoogle Scholar
  61. 61.
    Guest, R.M., Fairhurst, M.C., Potter, J.M.: Diagnosis of visuo-spatial neglect using dynamic sequence features from a cancellation task. Pattern Anal. Appl. 5(3), 261–270 (2002)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Beis, J.M., Andre, J.M., Saguez, A.: Detection of visual field deficits and visual neglect with computerized light emitting diodes. Arch. Phys. Med. Rehabil. 75(6), 711–714 (1994)CrossRefGoogle Scholar
  63. 63.
    Fordell, H., et al.: A virtual reality test battery for assessment and screening of spatial neglect. Acta Neurol. Scand. 123(3), 167–174 (2011)CrossRefGoogle Scholar
  64. 64.
    Gur, R.C., et al.: A cognitive neuroscience-based computerized battery for efficient measurement of individual differences: Standardization and initial construct validation. J. Neurosci. Methods 187(2), 254–262 (2010)CrossRefGoogle Scholar
  65. 65.
    Katz, N., et al.: Interactive virtual environment training for safe street crossing of right hemisphere stroke patients with unilateral spatial neglect. Disabil. Rehabil. 27(20), 1235–1243 (2005)CrossRefGoogle Scholar
  66. 66.
    McCall, D., et al.: The utility of computerized visual communication for improving natural language in chronic global aphasia: Implications for approaches to treatment in global aphasia. Aphasiology 14(8), 795–826 (2000)CrossRefMathSciNetGoogle Scholar
  67. 67.
    Ramsberger, G.: Achieving conversational success in aphasia by focusing on non-linguistic cognitive skills: a potentially promising new approach. Aphasiology 19(10/11), 1066–1073 (2005)CrossRefGoogle Scholar
  68. 68.
    Katz, R.C., Wetz, R.T.: The efficacy of computer-provided reading treatment for chronic aphasia adults. J. Speech Lang. Hear. Res. 40(3), 493–507 (1997)Google Scholar
  69. 69.
    Chen, S.H.A., et al.: The effectiveness of computer-assisted cognitive rehabilitation for persons with traumatic brain injury. Brain Inj. 11(3), 197–209 (1997)CrossRefGoogle Scholar
  70. 70.
    Frassinetti, F., et al.: Long-lasting amelioration of visuospatial neglect by prism adaptation. Brain 125, 608–623 (2002)CrossRefGoogle Scholar
  71. 71.
    Kim, J., et al.: Virtual environment training system for rehabilitation of stroke patients with unilateral neglect: crossing the virtual street. Cyberpsychol. Behav. 10(1), 7–15 (2007)CrossRefGoogle Scholar
  72. 72.
    Rizzo, A.A., et al.: A virtual reality scenario for all seasons: The virtual classroom. CNS Spectr. 11(1), 35–44 (2006)MathSciNetGoogle Scholar
  73. 73.
    Rizzo, A., et al.: Virtual reality exposure therapy for combat-related PTSD. In: Shiromani, P.J., Keane, T.M., LeDoux, J.E. (eds.) Post-Traumatic Stress Disorder, pp. 375–399. Humana Press, New York (2009)Google Scholar
  74. 74.
    Charles, D., Black, M.: Dynamic player modeling: a framework for player-centered digital games. In: Proceedings. of the International Conference on Computer Games: Artificial Intelligence, Design and Education (2004)Google Scholar
  75. 75.
    Charles, D., et al.: Player-centred game design: Player modelling and adaptive digital games. In: Proceedings of the Digital Games Research Conference (2005) (Citeseer)Google Scholar
  76. 76.
    Spronck, P.H.M.: Adaptive game AI. Universitaire Pers Maastricht, Maastricht (2005)Google Scholar
  77. 77.
    Wilms, I.: Using artificial intelligence to control and adapt level of difficulty in computer-based, cognitive therapy—an explorative study. J. Cybertherapy Rehabil. 4(3), 387–396 (2011)MathSciNetGoogle Scholar
  78. 78.
    Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. 13(3), 257–266 (1983)CrossRefMathSciNetGoogle Scholar
  79. 79.
    Kolb, D.A.: Experimental Learning: Experience as the Source of Learning and Development, vol. 256, Financial Times/Prentice Hall, New Jersey (1983)Google Scholar
  80. 80.
    Lave, J., Wenger, E.: Situated Learning: Legitimate Peripheral Participation (Learning in doing: social, cognitive and computational perspectives). Cambridge University Press, Oxford (1991)CrossRefGoogle Scholar
  81. 81.
    Wilms, I., Malá, H.: Indirect versus direct feedback in computer-based prism adaptation therapy. Neuropsychol. Rehabil. 20(6), 830–853 (2010)CrossRefGoogle Scholar
  82. 82.
    Stratton, G.M.: Some preliminary experiments on vision without inversion of the retinal image. Psychol. Rev. 3(6), 611–617 (1896)CrossRefGoogle Scholar
  83. 83.
    Rossetti, Y., et al.: Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature 395(6698), 166–169 (1998)CrossRefGoogle Scholar
  84. 84.
    Serino, A., et al.: Effectiveness of prism adaptation in neglect rehabilitation a controlled trial study. Stroke 40(4), 1392–1398 (2009)CrossRefGoogle Scholar
  85. 85.
    Serino, A., et al.: Neglect treatment by prism adaptation: what recovers and for how long. Neuropsychol. Rehabil. 17(6), 657–687 (2007)CrossRefGoogle Scholar
  86. 86.
    Vangkilde, S., Habekost, T.: Finding wally: prism adaptation improves visual search in chronic neglect. Neuropsychologia 48(7), 1994–2004 (2010)CrossRefGoogle Scholar
  87. 87.
    Vangkilde, S.: Prisme-baseret rehabilitering af visuel neglekt. Dissertation, University of Copenhagen, Copenhagen (2006)Google Scholar
  88. 88.
    Redding, G.M., Wallace, B.: Components of prism adaptation in terminal and concurrent exposure: organization of the eye-hand coordination loop. Percept. Psychophys. 44(1), 59–68 (1988)CrossRefGoogle Scholar
  89. 89.
    Fernández-Ruiz, J., Díaz, R.: Prism adaptation and aftereffect: specifying the properties of a procedural memory system. Learn. Mem. 6(1), 47–53 (1999)Google Scholar
  90. 90.
    Meinzer, M., et al.: Intensive language training enhances brain plasticity in chronic aphasia. BMC Biol. 2(20), 1–9 (2004)Google Scholar
  91. 91.
    Mortley, J., Enderby, P., Petheram, B.: Using a computer to improve functional writing in a patient with severe dysgraphia. Aphasiology 15(5), 443–461 (2001)CrossRefGoogle Scholar
  92. 92.
    Pedersen, P.M., Vinter, K., Olsen, T.S.: Improvement of oral naming by unsupervised computerised rehabilitation. Aphasiology 15(2), 151–169 (2001)CrossRefGoogle Scholar
  93. 93.
    Katz, R.C., Nagy, V.T.: An intelligent computer-based spelling task for chronic aphasic patients. In: Clinical Aphasiology Conference, BRK Publisher, Seabrook Island (1984)Google Scholar
  94. 94.
    Katz, R.C., Nagy, V.T.: A self-modifying computerized reading program for severely impaired aphasic adults. In: Clinical Aphasiology Conference, BRK Publishers, Ashland (1985)Google Scholar
  95. 95.
    Katz, R.C., Wertz, R.T.: Hierarchical computerized language treatment for aphasic adults. Int. J. Rehabil. Res. 12(4), 454–455 (1989)CrossRefGoogle Scholar
  96. 96.
    Wertz, R.T., Katz, R.C.: Outcomes of computer-provided treatment for aphasia. Aphasiology 18(3), 229–244 (2004)CrossRefGoogle Scholar
  97. 97.
    Klingberg, T.: Computerized training of working memory in children with ADHD. Eur. Neuropsychopharmacol. 17, S192–S193 (2007)CrossRefGoogle Scholar
  98. 98.
    Lundqvist, A., et al.: Computerized training of working memory in a group of patients suffering from acquired brain injury. Brain Inj. 24(10), 1173–1183 (2010)CrossRefGoogle Scholar
  99. 99.
    Westerberg, H., et al.: Computerized working memory training after stroke: a pilot study. Brain Inj. 21(1), 21–29 (2007)CrossRefGoogle Scholar
  100. 100.
    Schmielau, F., Wong Jr, E.K.: Recovery of visual fields in brain-lesioned patients by reaction perimetry treatment. J. Neuroeng. Rehabil. 4, 1–16 (2007)CrossRefGoogle Scholar
  101. 101.
    Abel, S., et al.: Decreasing and increasing cues in naming therapy for aphasia. Aphasiology 19(9), 831–848 (2005)CrossRefGoogle Scholar
  102. 102.
    Breitenstein, C., et al.: Five days versus a lifetime: Intense associative vocabulary training generates lexically integrated words. Restor. Neurol. Neurosci 25(5–6), 493–500 (2007)Google Scholar
  103. 103.
    Fink, R.B., et al.: Computer-assisted treatment of word retrieval deficits in aphasia. Aphasiology 19(10–11), 943–954 (2005)CrossRefGoogle Scholar
  104. 104.
    Kim, K., et al.: A virtual reality assessment and training system for unilateral neglect. CyberPsychol. Behav. 7, 742–749 (2004)CrossRefGoogle Scholar
  105. 105.
    Ramsberger, G., Marie, B.: Self-administered cued naming therapy: a single-participant investigation of a computer-based therapy program replicated in four cases. Am. J. Speech Lang. Pathol. 16(4), 343–358 (2007)CrossRefGoogle Scholar
  106. 106.
    Myers, R.L., Bierig, T.A.: Virtual reality and left hemineglect: a technology for assessment and therapy. CyberPsychol. Behav. 3(3), 465–468 (2000)CrossRefGoogle Scholar
  107. 107.
    Robertson, I.H., et al.: Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395(6698), 169–172 (1998)CrossRefGoogle Scholar
  108. 108.
    Donovan, N.J., et al.: Conceptualizing functional cognition in traumatic brain injury rehabilitation. Brain Inj. 25(4), 348–364 (2011)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Brain Rehabilitation using Advanced Technology Laboratory (BRATLab), Department of PsychologyUniversity of CopenhagenCopenhagen KDenmark
  2. 2.Center for Rehabilitation of Brain InjuryCopenhagen SDenmark

Personalised recommendations