Assessing Virtual Reality Environments as Cognitive Stimulation Method for Patients with MCI

  • Ioannis Tarnanas
  • Apostolos Tsolakis
  • Magda Tsolaki
Part of the Studies in Computational Intelligence book series (SCI, volume 536)


Advances in technology in the last decade have created a diverse field of applications for the care of persons with cognitive impairment. This chapter is an attempt to introduce a virtual reality computer-based intervention, which can used for cognitive stimulating and disease progression evaluation of a wide range of cognitive disorders ranging from mild cognitive impairment (MCI) to Alzheimer’s disease and various dementias. Virtual reality (VR) environments have already been successfully used in cognitive rehabilitation and show increased potential for use in neuropsychological evaluation allowing for greater ecological validity while being more engaging and user friendly. Nevertheless a holistic approach has been attempted, in order to view the research themes and applications that currently exist around the “intelligent systems” healthcare given to the cognitively impaired persons, and thus looking at research directions, systems, technological frameworks and perhaps trends.


Computerized cognitive training Computerized testing Cognitive reserve Dementia Psychometrics 


  1. 1.
    Virvou, M., Katsionis, G.: On the usability and likeability of virtual reality games for education: the case of VR-ENGAGE. Comput. Educ. 50, 154–178 (2008)CrossRefGoogle Scholar
  2. 2.
    Lewis, T.M., Aggarwal, R., Rajaretnam, N., Grantcharov, T.P., Darzi, A.: Training in surgical oncology: the role of virtual reality simulation. Surg. Oncol. 20, 134–139 (2011)CrossRefGoogle Scholar
  3. 3.
    Rizzo, A., Kim, G.J.: A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence 14(2), 119–146 (2005)CrossRefGoogle Scholar
  4. 4.
    Rizzo, A., Schultheis, M., Kerns, K.A., Mateer, C.: Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. 14(1/2), 207–239 (2004)CrossRefGoogle Scholar
  5. 5.
    Laczo, J., Vlcek, K., Vyhnalek, M., Vajnerova, O., Ort, M., Holmerova, I., Tolar, M., Andel, R., Bojar, M., Hort, J.: Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202, 252–259 (2009)CrossRefGoogle Scholar
  6. 6.
    Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., Kokmen, E.: Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56(3), 303–308 (1999)CrossRefGoogle Scholar
  7. 7.
    Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., Belleville, S., et al.: Mild cognitive impairment. Lancet 367(9518), 1262–1270 (2006)CrossRefGoogle Scholar
  8. 8.
    Petersen, R.C.: Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256(3), 183–194 (2004)CrossRefGoogle Scholar
  9. 9.
    Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.-O., Nordberg, A., et al.: Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 256(3), 240–246 (2004)CrossRefGoogle Scholar
  10. 10.
    Eschweiler, G.W., Leyhe, T., Klöppel, S., Hüll, M.: New developments in the diagnosis of dementia. Dtsch. Ärzteblatt Int. 107(39), 677–683 (2010)Google Scholar
  11. 11.
    Hanfelt, J.J., Wuu, J., Sollinger, A.B., Greenaway, M.C., Lah, J.J., Levey, A.I., Goldstein, F.C.: An exploration of subgroups of mild cognitive impairment based on cognitive, neuropsychiatric and functional features: analysis of data from the National Alzheimer’s Coordinating Center. Am. J. Geriatr. Psychiatry: Official J. Am. Assoc. Geriatr. Psychiatry 19(11), 940–950 (2011)CrossRefGoogle Scholar
  12. 12.
    Petersen, R.C., Roberts, R.O., Knopman, D.S., Boeve, B.F., Geda, Y.E., Ivnik, R.J., Smith, G.E., et al.: Mild cognitive impairment: ten years later. Arch. Neurol. 66(12), 1447–1455 (2009)CrossRefGoogle Scholar
  13. 13.
    Gold, D.A.: An examination of instrumental activities of daily living assessment in older adults and mild cognitive impairment. J. Clin. Exp. Neuropsychol. 37–41 (2012)Google Scholar
  14. 14.
    Perneczky, R., Pohl, C., Sorg, C., Hartmann, J., Komossa, K., Alexopoulos, P., Wagenpfeil, S., et al.: Complex activities of daily living in mild cognitive impairment: conceptual and diagnostic issues. Age Ageing 35(3), 240–245 (2006)CrossRefGoogle Scholar
  15. 15.
    Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., et al. : TREM2 Variants in Alzheimer’s Disease. N. Engl. J. Med. (2012) (121114171407007)Google Scholar
  16. 16.
    Patel, B.B., Holland, N.W.: Mild cognitive impairment: hope for stability, plan for progression. Clevel. Clin. J. Med. 79(12), 857–864 (2012)CrossRefGoogle Scholar
  17. 17.
    Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dement. J. Alzheimer’s Assoc. 7(3), 270–279 (2011)CrossRefGoogle Scholar
  18. 18.
    Wang, H.-M., Yang, C.-M., Kuo, W.-C., Huang, C.-C., Kuo, H.-C.: Use of a modified spatial-context memory test to detect amnestic mild cognitive impairment. PLoS ONE 8(2), e57030 (2013)CrossRefGoogle Scholar
  19. 19.
    Pai, M.C., Jacobs, W.J.: Int. J. Geriatr. Psychiatry 19, 250–255 (2004)Google Scholar
  20. 20.
    Cherrier, M.M., Mendez, M., Perryman, K.: Neuropsychiatry Neuropsychol. Behav. Neurol. 14, 159–168 (2001)Google Scholar
  21. 21.
    Kalova, E., Vlcek, K., Jarolimova, E., Bures, J.: Behav. Brain Res. 159, 175–186 (2005)CrossRefGoogle Scholar
  22. 22.
    Kessels, R.P., Feijen, J., Postma, A.: Dement. Geriatr. Cogn. Disord. 20, 184–191 (2005)CrossRefGoogle Scholar
  23. 23.
    Mapstone, M., Steffenella, T.M., Duffy, C.J.: A visuospatial variant of mild cognitive impairment: getting lost between aging and AD. Neurology 60(5), 802–808 (2003)CrossRefGoogle Scholar
  24. 24.
    Hort, J., Laczó, M., Vyhnálek, M., Bojar, J., Bureš, J., Vlček, K.: Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. 104(10), 4042–4047 (2007)Google Scholar
  25. 25.
    Rey, B., Alcañiz, M.: Research in Neuroscience and Virtual Reality. InTech (2010)Google Scholar
  26. 26.
    Cornwell, B.R., Johnson, L.L., Holroyd, T., Carver, F.W., Grillon, C.: Human hippocampal and parahippocampal theta during goal-directed spatial navigation predicts performance on a virtual Morris water maze. J. Neurosci.: Official J. Soc. Neurosci. 28(23), 5983–5990 (2008)CrossRefGoogle Scholar
  27. 27.
    Harvey, C.D., Collman, F., Dombeck, D.A., Tank, D.W.: Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461(7266), 941–946 (2009)CrossRefGoogle Scholar
  28. 28.
    Plancher, G., Tirard, A., Gyselinck, V., Nicolas, S., Piolino, P.: Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: influence of active and passive encoding. Neuropsychologia 50(5), 592–602 (2012)CrossRefGoogle Scholar
  29. 29.
    Slater, M., Antley, A., Davison, A., Swapp, D., Guger, C., Barker, C., Pistrang, N., et al.: A virtual reprise of the Stanley Milgram obedience experiments. PLoS ONE 1, e39 (2006)CrossRefGoogle Scholar
  30. 30.
    Waller, D., Richardson, A.R.: Correcting distance estimates by interacting with immersive virtual environments: effects of task and available sensory information. J. Exp. Psychol. Appl. 14(1), 61–72 (2008). doi: 10.1037/1076-898X.14.1.61 CrossRefGoogle Scholar
  31. 31.
    Klauer, K.C., Zhao, Z.: Double dissociations in visual and spatial short-term memory. J. Exp. Psychol. Gen. 133(3), 355–381 (2004)CrossRefGoogle Scholar
  32. 32.
    Lithfous, S., Dufour, A., Després, O.: Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12(1), 201–213 (2012)CrossRefGoogle Scholar
  33. 33.
    O’Keefe, J., Dostrovsky, J.: Brain Res. 34, 171–175 (1971)Google Scholar
  34. 34.
    Morris, R.G., Garrud, P., Rawlins, J.N., O’Keefe, J.: Nature 297, 681–683 (1982)CrossRefGoogle Scholar
  35. 35.
    Astur, R.S., Taylor, L.B., Mamelak, A.N., Philpott, L., Sutherland, R.J.: Behav. Brain Res. 132, 77–84 (2002)CrossRefGoogle Scholar
  36. 36.
    Feigenbaum, J.D., Morris, R.G.: Neuropsychology 18, 462–472 (2004)CrossRefGoogle Scholar
  37. 37.
    Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S., Frith, C.D., O’Keefe, J.: Science 280, 921–924 (1998)CrossRefGoogle Scholar
  38. 38.
    Abrahams, S., Pickering, A., Polkey, C.E., Morris, R.G.: Neuropsychologia 35, 11–24 (1997)CrossRefGoogle Scholar
  39. 39.
    De Lillo, C., James, F.C.: Spatial working memory for clustered and linear configurations of sites in a virtual reality foraging task. Cogn. Process. 13(Suppl 1), S243–S246 (2012)CrossRefGoogle Scholar
  40. 40.
    Koenig, S., Crucian, S., Dalrymple-Alford, J., Dünser, A.: Assessing navigation in real and virtual environments: a validation study. Int. J. Disabil. Hum. Dev. 10(4), 325–330 (2010)Google Scholar
  41. 41.
    Caffo, A., De Caro, M., Picucci, L., Notarnicola, A., Settanni, A., Livrea, P., Lancioni, G., Bosco, A.: Reorientation deficits are associated with amnestic mild cognitive impairment. Am. J. Alzheimer’s Dis. Dement. 27(5), SAGE Aug 1 (2012)Google Scholar
  42. 42.
    Liarokapis, F., Anderson, E.: Using augmented reality as a medium to assist teaching in higher education. To appear in Eurographics 2010, Education Program, Norrkfping, Sweden, 4–7 May 2010Google Scholar
  43. 43.
    Tsolaki, M., Kounti, F., Agogiatou, C., Poptsi, E., Bakoglidou, E., Zafeiropoulou, M., Soumbourou, A., et al.: Effectiveness of nonpharmacological approaches in patients with mild cognitive impairment. Neuro-degenerative Dis. 8(3), 138–145 (2011)CrossRefGoogle Scholar
  44. 44.
    Tsatali, M., Tarnanas, I., Malegiannaki, A., Tsolaki, M.: Does cognitive training with the use of a virtual museum improve neuropsychological performance in aMCI? In: 22nd Alzheimer Europe Conference in Vienna, Assistive Technologies P3, 121–134 (2012)Google Scholar
  45. 45.
    Ackerman, P.L., Kanfer, R., Calderwood, C.: Use it or lose it? WII brain exercise practice and reading for domain knowledge. Psychol. Aging 25, 753–766 (2010)CrossRefGoogle Scholar
  46. 46.
    Owen, A.M., Hampshire, A., Grahn, J.A., Stenton, R., Dajani, S., Burns, A.S., Howard, R.J., Ballard, C.G.: Putting brain training to the test. Nature 465, 775–778 (2010)CrossRefGoogle Scholar
  47. 47.
    Peretz, C., Korczyn, A.D., Shatil, E., Aharonson, V., Birnboim, S., Giladi, N.: Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology 36, 91–99 (2011)CrossRefGoogle Scholar
  48. 48.
    Hertzog, C., Kramer, A.F., Wilson, R.S., Lindenberger, U.: Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol. Sci. Public Interest 9, 1–65 (2009)Google Scholar
  49. 49.
    Denney, N.W.: A model of cognitive-development across the life-span. Dev. Rev. 4, 171–191 (1984)CrossRefGoogle Scholar
  50. 50.
    Baron, A., Mattila, W.R.: Response slowing of older adults: effects of time-limit contingencies on single- and dual-task performances. Psychol. Aging 4, 66–72 (1989)CrossRefGoogle Scholar
  51. 51.
    Buschkuehl, M., Jaeggi, S.M., Hutchison, S., Perrig-Chiello, P., Dapp, C., Muller, M., Breil, F., Hoppeler, H., Perrig, W.J.: Impact of working memory training on memory performance in old–old adults. Psychol. Aging 23, 743–753 (2008)CrossRefGoogle Scholar
  52. 52.
    Dahlin, E., Neely, A.S., Larsson, A., Backman, L., Nyberg, L.: Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 (2008)CrossRefGoogle Scholar
  53. 53.
    Sammer, G., Reuter, I., Hullmann, K., Kaps, M., Vaitl, D.: Training of executive functions in Parkinson’s disease. J. Neurol. Sci. 248, 115–119 (2006)CrossRefGoogle Scholar
  54. 54.
    Bherer, L., Kramer, A.F., Peterson, M.S., Colcombe, S., Erickson, K., Becic, E.: Transfer effects in task-set cost and dual-task cost after dual-task training in older and younger adults: further evidence for cognitive plasticity in attentional control in late adulthood. Exp. Aging Res. 34, 188–219 (2008)CrossRefGoogle Scholar
  55. 55.
    Davidson, D.J., Zacks, R.T., Williams, C.C.: Stroop interference, practice, and aging. Neuropsychol. Dev. Cogn. B AgingNeuropsychol. Cogn. 10, 85–98 (2003)CrossRefGoogle Scholar
  56. 56.
    Karbach, J., Kray, J.: How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–990 (2009)CrossRefGoogle Scholar
  57. 57.
    Ball, K., Berch, D.B., Helmers, K.F., Jobe, J.B., Leveck, M.D., Marsiske, M., Morris, J.N., Rebok, G.W., Smith, D.M., Tennstedt, S.L., Unverzagt, F.W., Willis, S.L.: Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288, 2271–2281 (2002)CrossRefGoogle Scholar
  58. 58.
    Schmiedek, F., Lovden, M., Lindenberger, U.: Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front. Aging Neurosci. 2, 27 (2010)Google Scholar
  59. 59.
    Klingberg, T.: Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 (2010)CrossRefGoogle Scholar
  60. 60.
    Achtman, R.L., Green, C.S., Bavelier, D.: Video games as a tool to train visual skills. Restor. Neurol. Neurosci. 26, 435–446 (2008)Google Scholar
  61. 61.
    Green, C.S., Bavelier, D.: Exercising your brain: a review of human brain plasticity and training-induced learning. Psychol. Aging 23, 692–701 (2008)CrossRefGoogle Scholar
  62. 62.
    Gee, J.P.: What Video Games Have to Teach Us about Learning and Literacy. Palgrave Macmillan, New York, NY (2007)Google Scholar
  63. 63.
    Shiffrin, R.M., Schneider, W.: Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychol. Rev. 84, 127–190 (1977)CrossRefGoogle Scholar
  64. 64.
    Logan, G.D.: Automaticity, resources, and memory: theoretical controversies and practical implications. Hum. Factors 30, 583–598 (1988)Google Scholar
  65. 65.
    Feng, J., Spence, I., Pratt, J.: Playing an action video game reduces gender differences in spatial cognition. Psychol. Sci. 18, 850–855 (2007)CrossRefGoogle Scholar
  66. 66.
    Basak, C., Boot, W.R., Voss, M.W., Kramer, A.F.: Can training in a real-time strategy video game attenuate cognitive decline in older adults? Psychol. Aging 23(4), 756–777 (2008)CrossRefGoogle Scholar
  67. 67.
    Mahncke, H.W., Connor, B.B., Appelman, J., Ahsanuddin, O.N., Hardy, J.L., Wood, R.A., Joyce, N.M., Boniske, T., Atkins, S.M., Merzenich, M.M.: Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc. Natl. Acad. Sci. U.S.A. 103, 12523–12528 (2006)CrossRefGoogle Scholar
  68. 68.
    Uchida, S., Kawashima, R.: Reading and solving arithmetic problems improves cognitive functions of normal aged people: a randomized controlled study. Age (Dordr.) 30, 21–29 (2008)CrossRefGoogle Scholar
  69. 69.
    Smith, G.E., Housen, P., Yaffe, K., Ruff, R., Kennison, R.F., Mahncke, H.W., Zelinski, E.M.: A cognitive training program based on principles of brain plasticity: results from the improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J. Am. Geriatr. Soc. 57, 594–603 (2009)CrossRefGoogle Scholar
  70. 70.
    Cicerone, K.D., Dahlberg, C., Kalmar, K., Langenbahn, D.M., Malec, J.F., Bergquist, T.F., Felicetti, T., Giacino, J.T., Harley, P.J., Harrington, D.E., Herzog, J., Kneipp, S., Laatsch, L., Morse, P.A.: Evidence-based cognitive rehabilitation: recommendations for clinical practice. Arch. Phys. Med. Rehabil. 81, 1596–1615 (2000)CrossRefGoogle Scholar
  71. 71.
    Cicerone, K.D., Dahlberg, C., Malec, J.F., Langenbahn, D.M., Felicetti, T., Kneipp, S., Ellmo, W., Kalmar, K., Giacino, J.T., Harlez, P., Laatsch, L., Morse, P., Catanese, J.: Evidence-based cognitive rehabilitation: updated review of the literature from 1998 through 2002. Arch. Phys. Med. Rehabil. 86, 1596–1615 (2005)Google Scholar
  72. 72.
    Tucker-Drob, E.M.: Neurocognitive functions and everyday functions change together in old age. Neuropsychology 25, 368–377 (2011)CrossRefGoogle Scholar
  73. 73.
    Ylvisaker, M., Turkstra, L.S., Coelho, C.: Behavioral and social interventions for individuals with traumatic brain injury: a summary of the research with clinical implications. Semin. Speech Lang. 26(4), 256–257 (2005)CrossRefGoogle Scholar
  74. 74.
    Sohlberg, M.M., Mateer, C.A. (eds.): Cognitive rehabilitation: an integrative neuropsychological approach. Guilford Press, New York (2001)Google Scholar
  75. 75.
    Mozolic, J.L., Hayasaka, S., Laurienti, P.J.: A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front. Hum. Neurosci. 4 (2010)Google Scholar
  76. 76.
    Lustig, C., Shah, P., Seidler, R., Reuter-Lorenz, P.A.: Aging, training, and the brain: a review and future directions. Neuropsychol. Rev. 19(4), 504–522 (2009)Google Scholar
  77. 77.
    Petersen, R.C., Parisi, J.E., Dickson, D.W., et al.: Neuropathologic features of amnestic mild cognitive impairment. Arch. Neurol. 63(5), 665–672 (2006)CrossRefGoogle Scholar
  78. 78.
    Stroop, J.R.: Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935)CrossRefGoogle Scholar
  79. 79.
    Papaliagkas, V., Kimiskidis, V., Tsolaki, M., Anogianakis, G.: Usefulness of event-related potentials in the assessment of mild cognitive impairment. BMC Neurosci. 9, 107 (2008)Google Scholar
  80. 80.
    Kimiskidis, V., Papaliagkas, V.: Event-related potentials for the diagnosis of mild cognitive impairment and Alzheimer’s disease. Expert Opin. Med. Diagn. 6(1), 15–26 (2012)Google Scholar
  81. 81.
    Pascual-Marqui, D.: Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. D 24, 5–12 (2002)Google Scholar
  82. 82.
    Holmes, A.P., Blair, R.C., Watson, J.D.G., Ford, I.: Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16(1), 7–22 (1996)Google Scholar
  83. 83.
    Li, S.C., Schmiedek, F., Huxhold, O., Röcke, C., Smith, J., Lindenberger, U.: Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychol. Aging 23(4), 731–742 (2008)Google Scholar
  84. 84.
    Dennis, W., Scialfa, C.T., Ho, G.: Age differences in feature selection in triple conjunction search. J. Gerontol. B 59(4), P191–P198 (2004)Google Scholar
  85. 85.
    Ho, G., Scialfa, C.T.: Age, skill transfer, and conjunction search. J. Gerontol. B 57(3), P277–P287 (2002)Google Scholar
  86. 86.
    Cant, J.S., Goodale, M.A.: Attention to form or surface properties modulates different regions of human occipitotemporal cortex. Cereb. Cortex 17(3), 713–731 (2007)Google Scholar
  87. 87.
    Mechelh, A., Humphreys, G.W., Mayall, K., Olson, A., Price, C.J.: Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading. Proc. Royal Soc. B 267(1455), 1909–1913 (2000)Google Scholar
  88. 88.
    Epstein., R.A.: Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12(10), 88–396 (2008)Google Scholar
  89. 89.
    Falkenstein, M., Hohnsbein, J., Hoormann, J.: Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr. Clin. Neurophysiol. 92(2), 148–160 (1994a)Google Scholar
  90. 90.
    Falkenstein, M., Hohnsbein, J., Hoormann, J.: Time pressure effects on late components of the event-related potential (ERP). J. Psychophysiol. 8(1), 22–30 (1994b)Google Scholar
  91. 91.
    Tam, C.W., Lam, L.C., Chiu, H.F., Lui, V.W.: Characteristic profiles of instrumental activities of daily living in Chinese older persons with mild cognitive impairment. Am. J. Alzheimers Dis. Dement. 22, 211–217 (2007)CrossRefGoogle Scholar
  92. 92.
    Pereira, F.S., Yassuda, M.S., Oliveira, A.M., Forlenza, O.V.: Executive dysfunction correlates with impaired functional status in older adults with varying degrees of cognitive impairment. Int. Psychogeriatr. 20, 1104–1115 (2008)CrossRefGoogle Scholar
  93. 93.
    Ahn, I.S., et al.: Impairment of instrumental activities of daily living in patients with mild cognitive impairment. Psychiatry Inv. 6, 180–184 (2009)CrossRefGoogle Scholar
  94. 94.
    Burton, C.L., Strauss, E., Bunce, D., Hunter, M.A., Hultsch, D.F.: Functional abilities in older adults with mild cognitive impairment. Gerontology 55, 570–581 (2009)CrossRefGoogle Scholar
  95. 95.
    Schmitter-Edgecombe, M., Woo, E., Greeley, D.R.: Characterizing multiple memory deficits and their relation to everyday functioning in individuals with mild cognitive impairment. Neuropsychology 23, 168–177 (2009)CrossRefGoogle Scholar
  96. 96.
    Aretouli, E., Brandt, J.: Everyday functioning in mild cognitive impairment and its relationship with executive cognition. Int. J. Geriatr. Psychiatry 25, 224–233 (2010)CrossRefGoogle Scholar
  97. 97.
    Bangen, K.J., et al.: Complex activities of daily living vary by mild cognitive impairment subtype. J. Int. Neuropsychol. Soc. 16, 630–639 (2010)CrossRefGoogle Scholar
  98. 98.
    Teng, E., Becker, B.W., Woo, E., Cummings, J.L., Lu, P.H.: Subtle deficits in instrumental activities of daily living in subtypes of mild cognitive impairment. Dement. Geriatr. Cogn. Disord. 30, 189–197 (2010)CrossRefGoogle Scholar
  99. 99.
    Teng, E., Becker, B.W., Woo, E., Knopman, D.S., Cummings, J.L., Lu, P.H.: Utility of the functional activities questionnaire for distinguishing mild cognitive impairment from very mild Alzheimer disease. Alzheimer Dis. Assoc. Disord. 24, 348–353 (2010)CrossRefGoogle Scholar
  100. 100.
    Schmiedek, F., Bauer, C., Lovden, M., Brose, A., Lindenberger, U.: Cognitive enrichment in old age: web-based training programs. GeroPsych 23(2), 59–67 (2010)Google Scholar
  101. 101.
    Nouchi, R., Taki, Y., Takeuchi, H., Hashizume, H., Akitsuki, Y., Shigemune, Y., Sekiguchi, A., Kotozaki, Y., Tsukiura, T., Yomogida, Y., Kawashima, R.: Brain training game improves executive functions and processing speed in the elderly. PLoS ONE 7, e29676 (2012)CrossRefGoogle Scholar
  102. 102.
    Saczynski, J.S., Rebok, G.W., Whitfield, K.E., Plude, D.J.: Effectiveness of CD-ROM memory training as a function of within-session autonomy. Int. J. Cogn. Technol. 9(1), 25–33 (2004)Google Scholar
  103. 103.
    Lee, B., Chen, Y., Hewitt, L.: Age differences in constraints encountered by seniors in their use of computers and the internet. Comput. Hum. Behav. 27(3), 1231–1237 (2011)CrossRefGoogle Scholar
  104. 104.
    Torres, A.: Cognitive effects of video games on older people. ICDVRAT 19, 191–198 (2008)Google Scholar
  105. 105.
    Belchior, P.D.C. Cognitive training with video games to improve driving skills and driving safety among older adults [dissertation]. ProQuest Information and Learning (2008)Google Scholar
  106. 106.
    Colcombe, S., Kramer, A.F.: Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003)CrossRefGoogle Scholar
  107. 107.
    Weiand, C.: Neuropsychologische Behandlungsmethoden im Vergleich—Eine randomisierte klinische Studie [Comparing neuropsychological treatment methods—A randomized clinical trial]. PhD dissertation, University of Konstanz, Konstanz (2006)Google Scholar
  108. 108.
    Colzato, L.S., Van Muijden, J., Band, G.P.H., Hommel, B.: Genetic modulation of training and transfer in older adults: BDNF Val66Met polymorphism is associated with wider useful field of view. Front. Psychol. 2, 199 (2011)CrossRefGoogle Scholar
  109. 109.
    Geusgens, C., Winkens, I., van Heugten, C., Jolles, J., van den Heuvel, W.: The occurence and measurement of transfer in cognitive rehabilitation: a critical review. J. Rehabil. Med. 39(6), 425–439 (2007)Google Scholar
  110. 110.
    Slater, M.: Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos. Trans. R. Soc. B: Biol. Sci. 364, 3549–3557 (2009)CrossRefGoogle Scholar
  111. 111.
    Lange, B., Rizzo, A., Chang, C.-Y., Suma, E., Bolas, M.: Markerless Full Body Tracking: Depth-Sensing Technology within virtual environments. Paper presented at the Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Orlando (2011)Google Scholar
  112. 112.
    Nebelrath, R., Lu, C., Schulz, C.H., Frey, J., Alexandersson, J.: A gesture based system for context-sensitive interaction with smart homes. In: Wichert, R., Eberhardt, B. (eds.), 4. AALKongress, pp. 209–222 (2011)Google Scholar
  113. 113.
    Hart, T.A., Chaparro, B.S., Halcomb, C.G.: Evaluating websites for older adults: adherence to ‘senior-friendly’ guidelines and end-user performance. Behav. Info. Technol. 27(3), 191–199 (2008)CrossRefGoogle Scholar
  114. 114.
    Pew Internet and American Life Project: Changes in internet use by age, 2000–2010. Accessed 24 Jul 2011 (2010)Google Scholar
  115. 115.
    Gamberini, L., Alcaniz, M., Barresi, G., Fabregat, M., Ibanez, F., et al.: Cognition, technology and games for the elderly: an introduction to ELDERGAMES project. PsychNology J 4(3), 285–308 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ioannis Tarnanas
    • 1
  • Apostolos Tsolakis
    • 2
  • Magda Tsolaki
    • 1
  1. 1.School of MedicineAristotle University of ThessalonikiExohi, ThessalonikiGreece
  2. 2.School of Electrical and Computer EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations