Skip to main content

Sesquiterpenoids (C15)

  • Chapter
  • First Online:
Chemistry of Plant Natural Products

Abstract

The carbon content of monoterpenes has been taken as reference for the classification of terpenoids, like sesqui-, di-, sester-, and tri-, as they are formed by iterative condensation of C5-isoprene units up to C25. Two C15 units condense to form C30 compounds (cf. Fig. 5.15). “Sesqui” (Latin) means “one half more.” Since monoterpene contains C10, the next elongated chain will contain C15 (C10+C5)—thus the carbon content is one-half more compared to monoterpene and hence the prefix sesqui is used for C15-terpenoids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webster’s Encyclopedic Unabridged Dictionary of the English language, Gramery Books, New York, 1996, p. 4.

    Google Scholar 

  2. L. Ruzicka, Höhere Terpenverbindungen IX Ǚber die Totalsynthese des d,l-Nerolidols und des Farnesols. Helv. Chim. Acta., 1923, 6, 492-502.

    Article  CAS  Google Scholar 

  3. Elias J. Corey, John A. Katzenellenbogen, and Gary H. Posner, New Stereospecific Synthesis of Trisubstituted Olefins. Stereospecific Synthesis of Farnesol, J. Am. Chem. Soc., 1967, 89, 4245-4247.

    Google Scholar 

  4. Hiroshi Suginome, Takahiko Kondoh, Camelia Gogonea, Vishwakarma Singh, Hitoshi Goto and Eiji Osawa, Photoinduced Molecular Transformations. Part 155. General Synthesis of Macrocyclic Ketones Based on a Ring Expansion Involving a Selective β-Scission of Alkoxy Radicals, Its Application to a New Synthesis of (±)-Isocaryophyllene and (±)-Caryophyllene, and a Conformational Analysis of the Two Sesquiterpenes and the Radical Intermediate in the Synthesis by MM3 Calculations, J. Chem. Soc. Perkin Trans. 1, 1995, 69-81, and pertinent references cited.

    Google Scholar 

  5. H. C. Hill, R. I. Reed, and (Miss) M. T. Robert-Lopes, Mass Spectra and Molecular Structure. Part 1. Correlation Studies and Metastable Transitions, J. Chem. Soc. (C), 1998, 93-101.

    Google Scholar 

  6. A. Aebi, D. H. R. Barton, A. W. Burgstahler and A. S. Lindsey, Sesquiterpenoids. Part V. The Stereochemistry of the Tricyclic Derivatives of Caryophyllene, J. Chem. Soc. (London), 1954, 4659-4665.

    Google Scholar 

  7. D. H. R. Barton and A. Nickon, The Absolute Configuration of Caryophyllene, J. Chem. Soc., 1954, 4665-4669.

    Google Scholar 

  8. A. Horeau and H.K. Sutherland, The Absolute Configuration of Some Caryophyllene Derivatives, J. Chem. Soc. (C), 1966, 247-248.

    Google Scholar 

  9. Alain Horeau, Principe et Applicatioons d’une Nouvelle Methode de Determination des Configurations dite “par Dedouplement Partiel”, Tetrahedron Lett., 1961, 506-512.

    Google Scholar 

  10. E. J. Corey, Rajat B. Mitra and Hisashi Uda, Total Synthesis of d,l-Caryophyllene and d,l-Isocaryophyllene, J. Am. Chem. Soc., 1963, 85, 362-363.

    Google Scholar 

  11. E. J. Corey, Rajat B. Mitra and Hisashi Uda, Total Synthesis of d,l-Caryophyllene and d,l-Isocaryophyllene, J. Am. Chem. Soc., 1964, 86, 485-492.

    Google Scholar 

  12. D. Rogers and Mazhar-ul-Haque, The Molecular and Crystal Structure of Caryophyllene Chlorohydrin, Proc. Chem. Soc., 1963, 371-372.

    Google Scholar 

  13. Jean L. Gras, Robert Maurin and Marcel Bertrand, Une Voie Dacces Possible au Caryophyllene – Synthese Du Dihydro-5,6-norcaryophyllene, Tetrahedron Lett., 1969, 3533-3536.

    Google Scholar 

  14. A. Kumar, A. Sing and D. Devaprabhakara, A Simple and Efficient Route to Caryophyllene System – Synthesis of dl-isocaryophyllene, Tetrahedron Lett., 1976, 2177-2178.

    Google Scholar 

  15. John E. McMurray and Dennis D. Miller, Synthesis of Isocaryophyllene by Titanium-Induced Keto Ester Cyclization, Tetrahedron Lett., 1983, 1885-1888.

    Google Scholar 

  16. Yasuo Ohtsuka, Setsuko Niitsuma, Hajime Tadokoro, Toshio Hayashi, and Takeshi Oishi, Medium-Ring Ketone Synthesis. Total Syntheses of (+)-Isocaryophyllene and (+)-Caryophyllene, J. Org. Chem., 1984, 49, 2328-2332.

    Article  Google Scholar 

  17. M. Bertrand and J. L Gras, Synthese Totale du (+)-Isocaryophyllene, Tetrahedron, 1974, 30, 793-796.

    Google Scholar 

  18. R. Vaidyanathaswami and D. Devaprabhakara, A Convenient Synthesis of cis,cis-1,5-Cyclononadiene, J. Org. Chem., 1967, 32, 4143-4143.

    Article  Google Scholar 

  19. Isidro G. Collado, James R. Hanson and Antonio J. Macias-Sánchez, Recent Advances in the Chemistry of Caryophyllene, Nat. Prod. Rep., 1998, 187-204 and relevant references cited.

    Google Scholar 

  20. Sriram Shankar and Robert M. Coates, Solvolysis of Caryophyllene-8β-yl Derivatives: Biomimetic Rearrangement – Cyclization to 12-Nor-8α-presilphiperfolan-9β-ol, J. Org. Chem., 1998, 63, 9177-9182.

    Article  CAS  Google Scholar 

  21. J. M. Greenwood, J. K. Sutherland and A. Turre, The Conversion of Humulene into Caryophyllene, Chem. Commun., 1965, 410-411.

    Google Scholar 

  22. A. Nickon, T. Iwadare, F. J. McGuire, J. R. Mahajan, S. A. Narang and B. Umezawa, The Structure, Stereochemistry, and Genesis of α-Caryophyllene Alcohol (Apollan-11-ol), J. Am. Chem. Soc., 1970, 92, 1688-1696.

    Article  CAS  Google Scholar 

  23. K. W. Gemmell, W. Parker, J. S. Roberts and G. A. Sim, The Structure of α-Caryophyllene Alcohol, J. Am. Chem. Soc., 1964, 86, 1438-1439.

    Article  CAS  Google Scholar 

  24. Sukh Dev, Studies in Sesquiterpenes- XVIII, The Proton Magnetic Resonance Spectra of Some Sesquiterpenes a Structure of Humulene, Tetrahedron, 1960, 9, 1-9; references cited.

    Google Scholar 

  25. A. Nickon and E. F. Silversmith, Organic Chemistry: The Name Game, Pergamon Press, New York, 1987, 36.

    Google Scholar 

  26. Ping-Jyun Sung, Li-Fan Chuang, Jimmy Kuo, Tung-Yung Fan and Wan-Ping Hu, Rumphellatin A, the first chlorine-containing caryophyllan-type norsequiterpenoid from Rumphella antipathies, Tetrahedron Lett., 2007, 48, 3987-3989.

    Article  CAS  Google Scholar 

  27. Ping-Jyum Sung, Li-Fan Chuang, and Wan-Ping Hu, Rumphellatins B and C, Two New Caryophyllane-Type Hemiketal Norsesquiterpenoids from the Formosan Gorgonian Coral Rumphella antipathies, Bull. Chem. Soc. Jpn., 2007, 80, 2395-2399.

    Article  CAS  Google Scholar 

  28. Sukh Dev, The Chemistry of Longifolene and its Derivatives, Fortschr. Chem. org. Naturstoffe, 1981, 40, 49-104 and references cited.

    Google Scholar 

  29. J. S. Yadav, U. R. Nayak, and Sukh Dev, Studies in Sesquiterpenes – LV. Isolongifolene (Part 6): Mechanism of Rearrangement of Longifolene to Isolongifolene,Tetrahedron, 1980, 36, 309-315.

    Google Scholar 

  30. Sukh Dev, Aspects of Longifolene Chemistry. An Example of Another Facet of Natural Products Chemistry, Acc. Chem. Res., 1981, 14, 82-88.

    Article  CAS  Google Scholar 

  31. Jerome A. Berson, James H. Hammons, Arthur W. McRowe, Robert G. Bergman, Allen. Remanick, and Donald. Houston, Chemistry of Methylnorbornyl Cations. VI. The Stereochemistry of Vicinal Hydride Shift. Evidence for the Nonclassical Structure of 3-Methyl-2-norbornyl Cations, J. Am. Chem. Soc., 1967, 89, 2590-2600.

    Article  CAS  Google Scholar 

  32. D. Arigoni, Stereochemical Aspects of Sesquiterpene Biosynthesis, Pure Appl. Chem., 1975, 41, 219-245.

    Article  CAS  Google Scholar 

  33. J. S. Simonsen and D. H. R. Barton, The Terpenes, Vol. III, Cambridge University Press, Cambridge, England, 1952, pp. 92-98.

    Google Scholar 

  34. R. H. Moffett and D. Rogers, The Molecular Configuration of Longifolene Hydrochloride, Chem. Ind. (London), 1953, 916.

    Google Scholar 

  35. P. Naffa and G. Ourisson, Chemical Approach to the Structure of Longifolene, Chem. and Ind. (London), 1953, 917-918.

    Google Scholar 

  36. John E. McMurry and Stephen J. Isser, Total Synthesis of Longifolene, J. Am. Chem. Soc., 1972, 94, 7132-7137.

    Article  CAS  Google Scholar 

  37. H. C. Hill, R. I. Reed, and (Miss) M. T. Robert-Lopes, Mass Spectra and Molecular Structure. Part I, Correlation Studies and Metastable Transitions, J. Chem. Soc. (C), 1968, 93-101.

    Google Scholar 

  38. E. J. Corey, Masaji Ohno, Rajat B. Mitra, and Paul A. Vatakenchery, Total Synthesis of Longifolene, J. Am. Chem. Soc., 1964, 86, 478-485.

    Article  CAS  Google Scholar 

  39. Robert A. Volkmann, Glenn C. Andrews and William S. Johnson, A Novel Synthesis of Longifolene, J. Am. Chem. Soc., 1975, 97, 4777-4779.

    Article  CAS  Google Scholar 

  40. Wolfgang Oppolzer and Thiery Godel, A New and Efficient total Synthesis of (+)-Longifolene, J. Am. Chem. Soc., 1978, 100, 2583-2584.

    Article  CAS  Google Scholar 

  41. U. Ramdas Nayak and Sukh Dev, Longicyclene, the First Tetracyclic Sesquiterpene, Tetrahedron Lett., 1963, 243-246.

    Google Scholar 

  42. U. R. Nayak and Sukh Dev, Studies in Sesquiterpenes – XXXV Longicyclene, The First Tetracyclic Sesquiterpene, Tetrahedron, 1968, 24, 4099-4106.

    Google Scholar 

  43. Steven C. Welch and Roland L. Walters, Stereoselective Total Synthesis of (+)-Longicyclene, (+)-Longicamphor and (+)-Longiborneol. J. Org. Chem., 1974, 18, 2665-2673.

    Article  Google Scholar 

  44. D. H. R. Barton, Triterpenoids. Part III. Cycloartenone, a Triterpenoid Ketone, J. Chem. Soc., 1951, 1444.

    Google Scholar 

  45. P. G. Gassman and W. M. Hooker, Near-Infrared Studies. Norbornenes and Related Compounds, J. Am. Chem. Soc., 1965, 87, 1079-1083.

    Article  CAS  Google Scholar 

  46. Ludmila Birladeanu, The Stories of Santonin and Santonin Acid, Angew. Chem. Int. Ed., 2003, 42, 1202-1208.

    Article  CAS  Google Scholar 

  47. For earlier literature see J. L. Simonsen and D. H. R. Barton, The Terpenes, Cambridge University Press, 1952, Vol. III.

    Google Scholar 

  48. George Roger Clemo, Robert Downs Haworth, and Eric Walton, The Constitution of Santonin. Part I. The Synthesis of dl-Santonous Acid, J. Chem. Soc., 1929, 2368-2387.

    Google Scholar 

  49. G. R. Clemo and R. D. Haworth, The Constitution of Santonin. Part II. The Synthesis of Racemic Desmotroposantonin, J. Chem. Soc., 1930, 1110-1115.

    Google Scholar 

  50. G. R. Clemo and R. D. Haworth, The Constitution of Santonin. Part III. Proof of the Positions of the Methyl Groups, J. Chem. Soc., 1930, 2579-2582.

    Google Scholar 

  51. James A. Marshall and Peter G. M. Wuts, Stereocontrolled Total Synthesis of α- and β-Santonin, J. Org. Chem., 1978, 43, 1086-1089.

    Article  CAS  Google Scholar 

  52. E. J. Corey and C. U. Kim, New and Highly Effective Method for the Oxidation of Primary and Secondary Alcohols to Carbonyl Compounds, J. Am. Chem. Soc., 1972, 94, 7586-7587.

    Article  CAS  Google Scholar 

  53. E. J. Corey and C. U. Kim, Improved Synthetic Routes to Prostaglandins Utilizing Sulfide-Mediated Oxidation of Primary and Secondary Alcohols, J. Org. Chem., 1973, 38, 1233-1234.

    Article  CAS  Google Scholar 

  54. Farouk S. El-Feraly, Daniel A. Benigni, and Andrew T. McPhail, Biogenetic-type Synthesis of Santonin, Chrysanolide, Dihydrochrysanolide, Tulirinol, Arbusculin-C, Tanacetin, and Artemin, J. Chem. Soc. Perkin Trans 1, 1983, 355-364 and the references cited.

    Google Scholar 

  55. I. Abé, T. Miki, M. Sumi, and T. Toga, Chem. Ind. (London), 1956, 95.

    Google Scholar 

  56. J. C. Fiaud and H. B. Kagan, Determination of Stereochemistry by Chemical Correlation Methods in Stereochemistry, Fundamentals and Methods, Ed. Henri B. Kagan, George Thieme Publishers, Stuttgart, 1977, Vol. 3, p. 30.

    Google Scholar 

  57. W. Cocker and T. B. H. McMurry, Stereochemical Relationships in the Eudesmane (Selinaceae) Group of Sesquiterpenes, Tetrahedron, 1960 ,8, 181-204.

    Article  CAS  Google Scholar 

  58. Andrew P. J. Brunskill, Hugh W. Thompson and Roger A. Lalancette, Santonic Acid: Catemeric Hydrogen Bonding in a γ,ε−Diketo Carboxylic Acid, Acta Crystallogr. Sec. C, 1999, 55, 566-568.

    Google Scholar 

  59. J. D. M. Asher and G. A. Sim, Sesquiterpenoids. Part III. Stereochemistry of Santonin: X-Ray Analysis of 2-Bromo-α-Santonin, J. Chem. Soc., 1965, 6041-6055.

    Google Scholar 

  60. J. D. M. Asher and G. A. Sim, Sesquiterpenoids. Part II. The Stereochemistry of Isophotosantonic Lactone: X-ray Analysis of 2-Bromodihydroisophoto-α-santonic Lactone Acetate, J. Chem. Soc., 1965, 1584-1594.

    Google Scholar 

  61. A. T. McPhail, B. Rimmer, J. Monteath Robertson, and G. A. Sim, Sesquiterpenoids, Part VI, The Stereochemistry of Desmotroposantonon: X-ray Analysis of 2-Bromo-(–)- β-desmotroposantonin, J. Chem. Soc. (B),1967, 101-106.

    Google Scholar 

  62. P. Coggon and G. A. Sim, Sesquiterpenoids. Part VIII. Stereochemistry of Santonin : X-Ray Analysis of 2-Bromo-β-Santonin, J. Chem. Soc. (B), 1969, 237-242.

    Google Scholar 

  63. P. S. Pregosin, E. W. Randall, and T. B. H. McMurry, 13C Fourier Studies, The Configurational Dependence of the Carbon-13 Chemical Shifts in Santonin Derivatives, J. Chem. Soc. Perkin 1, 1972, 299-

    Google Scholar 

  64. P. Brown and C. Djerassi, Electron-Impact Induced Rearrangement Reactions of Organic Molecules, Angew. Chem. Int. Ed.., 1967, 6, 477.

    Article  CAS  Google Scholar 

  65. R. B. Woodward, F. J. Brutschy, and Harold Baer, The Structure of Santonic Acid, J. Am. Chem. Soc., 1948, 70, 4216-4221.

    Google Scholar 

  66. D. H. R. Barton, G. P. Moss and J. A. Whittle, Investigation on the Biosynthesis of Steroids and Terpenoids. Part 1. A Preliminary Study of the Biosynthesis of Santonin, J. Chem. Soc. (C), 1968, 1813-1818.

    Google Scholar 

  67. D. M. Simonovic, A. Somasekar Rao and S. C. Bhattacharyya, Terpenoids XXXIX. The Synthesis of Tetrahydrosaussura lactone, Tetrahedron, 1963, 19, 1061-1071.

    Article  CAS  Google Scholar 

  68. Masayoshi Ando, Ken Nanami, Toru Nakagawa, Toyonobu Asao, and Kahei Takase, Synthesis of (–)-Occidentalol and its C-7 Epimer, Tetrahedron Lett., 1970, 3891-3894.

    Google Scholar 

  69. Yasuo Fujimoto, Takeshi, Shimizu, and Takashi Tatsuno, Modification of α-Santonin II. Synthesis of Dihydrocostunolide, Tetrahedron Lett., 1976, 2041-2044.

    Google Scholar 

  70. G. Blay, L. Cardona, B. García and J. R. Pedro, The Synthesis of Bioactive Sesquiterpenes from Santonin in Studies in Natural Products Chemistry, Att-ur-Rahman (Ed.), 2000, 24, 53-129, Elsevier.

    Google Scholar 

  71. Tatsuo Nozoe, Toyonobu Asao, Masayoshi Ando, and Kahei Takase, The Total Synthesis of Chamaecynone, Tetrahedron Lett., 1967, 2821-2825.

    Google Scholar 

  72. T. Nozoe, T. S. Cheng, and T. Toda, The Structure of Chemaecynone, A Novel Nor-sesquiterpenoid from Chamaecyparis formosensis Matsum, Tetrahedron Lett, 1966, 3663-3669.

    Google Scholar 

  73. D. H. R. Barton, P. de Mayo, and Mohammed Shafiq, The Mechanism of the Light-catalyzed Transformation of Santonin into 10-Hydroxy-3-oxogual-4-ene, Proc. Chem. Soc., 1957, 205.

    Google Scholar 

  74. D. H. R. Barton, P. de Mayo, and Mohammed Shafiq, Photochemical Transformations. Part II. The Constitution of Lumisantonin, J. Chem. Soc., 1958, 140-145.

    Google Scholar 

  75. D. Arigoni, H. Bosshard, H. Bruderer, G. Büchi, O. Jeger, and K. J. Krebaum, Uber gegenseitige Beziehungen und Umwandlungen bei Bestrahlungsprodukten des Santonins, Helv. Chim. Acta, 1957, 40, 1732.

    Article  CAS  Google Scholar 

  76. O. L. Chapman and L. F. Englert, A. Mechanistically Significant Intermediate in the Lumisantonin to Photosantonic Acid Conversion, J. Am. Chem. Soc., 1963, 85(19), 3028-3029.

    Google Scholar 

  77. M. H. Fisch and J. H. Richards, The Mechanism of the Photoconversion of Santonin, J. Am. Chem. Soc., 1963, 85(19), 3030-3031.

    Article  Google Scholar 

  78. H. E. Zimmerman and D. L. Schuster, A New Approach to Mechanistic Organic Photochemistry. IV. Photochemical Rearrangements of 4,4-Diphenylcyclohexadienone, J. Am. Chem. Soc., 1962, 84, 4527-4540.

    Article  CAS  Google Scholar 

  79. Also see Howard E. Zimmerman, Report on Recent Photochemical Investigations, Pure Appl Chem., 1964, 9, 493-498.

    Google Scholar 

  80. D. H. R. Barton, J. E. D. Levisalles, and J. T. Pinhey, Photochemical Transformations. Part XIV. Some Analogues of Isophotosantonic Lactone, J. Chem. Soc., 1962, 3472-3482.

    Google Scholar 

  81. Paluther (Artemether), Product Monograph, Rhóne-Paulene (India) Limited (when the world celebrated in 1997 the Centenary of the discovery (in 1897) of malaria parasite by Sir Ronald Ross, this monograph was dedicated to his memory.

    Google Scholar 

  82. H. Ziffer, R. J. Highet and D. L. Klayman, Artemisinin, An Endoperoxide Antimalarial from Artemisia annua L. Fortschr. Chem. org. Naturstoffe, 1997, 72, 121-214.

    CAS  Google Scholar 

  83. Daniel L. Klayman, Qinghaosu (Artemisinin): An Antimalarial Drug from China, Science, 1985, 228, 1049-1055.

    Article  Google Scholar 

  84. Anthony R. Butler and Yu-Lin Wu, Artemisinin (Qinghaosu): A New Type of Antimalarial Drug, Chem. Soc. Revs., 1992 , 85-90.

    Google Scholar 

  85. G. Schmid and W. Hofheinz, Total Synthesis of Qinghaosu, J. Am. Chem. Soc., 1983, 105, 624-625.

    Article  CAS  Google Scholar 

  86. Ronald J. Roth and Nancy Acton, A Simple Conversion of Artemisinic Acid into Artemisinin, J. Nat. Prod., 1989, 52, 1183-1185.

    Article  Google Scholar 

  87. Ronald J. Roth and Nancy Acton, A Facile Semisynthesis of the Antimalarial Drug Qinghaosu, J. Chem. Educ., 1991, 68, 612-613.

    Article  CAS  Google Scholar 

  88. J. S. Yadav, B. Thirupathaih and P. Srihari, A Concise Stereoselective Total Synthesis of (+)-Artemisinin, Tetrahedron, 2010, 66, 2005-2009.

    Article  CAS  Google Scholar 

  89. For other semisyntheses see references 6(a), and 6(d) to 6(f) of the paper of Yadav et al. [7].

    Google Scholar 

  90. For other total syntheses of artemisinin see references 4(b) to 4(h) of the paper of Yadav et al. [7].

    Google Scholar 

  91. Yeast Makes Artemisinin on Demand, Chemistry World, 2013, 10, May issue (Number 05), Research.

    Google Scholar 

  92. C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Doila, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F. Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P. S. Covello, J. D. Keasling, K. K. Reiling, N. S. Renninger, and J. D. Newman, High-Level Semi-Synthetic Production of the Potent, Antimalarial Artemisinin, Nature, 2013, 496, 528-532.

    Article  CAS  Google Scholar 

  93. K. Boehme and H. –D Brauer, Generation of Singlet Oxygen from Hydrogen Peroxide Disproportionation Catalyzed by Molybdate Ions., Inorg Chem., 1992,31 3468-3471.

    Google Scholar 

  94. Arych A. Frimer, The Reaction of Singlet Oxygen with Olefins: The Question of Mechanism, Chem. Rev. 1979, 79, 359-387, and references cited; pertinent page 364.

    Google Scholar 

  95. Simone C. Vonwiller, Jacqueline A. Warner, Simon T. Mann, and Richard K. Haynes, Copper(II) Trifluoromethanesulfonate-Induced Cleavage. Oxygenation of Allylic Hydroperoxides Derived from Qinghao Acid in the Synthesis of Qinghaosu Derivatives: Evidence for the Intermediacy of Enols, J. Am. Chem. Soc., 1995, 117, 11098-11105.

    Article  CAS  Google Scholar 

  96. Richard K. Haynes and Simone C. Vonwiller, Catalysed Oxygenation of Allylic Hydroperoxides Derived from Qinghao (Artemisinic) Acid. Conversion of Qinghao Acid into Dehydroqinghaosu (Artemisitene) and Qinghaosu (Artemisinin), J. Chem. Soc., Chem. Commun., 1990, 451- 453.

    Google Scholar 

  97. J. W. Cornforth, B. V. Milborrow, G. Ryback, and P. F. Wareing, Chemistry and Physiology of ‘Dormins’ in Sycamore, Nature, 1965, 205, 1269-1270.

    Article  CAS  Google Scholar 

  98. Kunikazu Sakai, Kyoko Takahashi, and Tomoko Nukano, Convenient Synthesis of Optically Active Abscisic Acid and Xanthoxin, Tetrahedron, 1992, 48, 8229-8238.

    Article  CAS  Google Scholar 

  99. J. W. Cornforth, B. V. Milborrow and G. Ryback, Synthesis of (±)-Abscisin II, Nature, 1965, 206, 715.

    Article  CAS  Google Scholar 

  100. Yasushi Todoroki and Nobuhiro Hiarai, Abscisic Acid Analogs for probing the Mechanism of Abscisic Acid Reception and Inactivation in Studies in Natural Products Chemistry, Atta-ur-Rahaman (Ed.), Elsevier, 2002, 27, 321-360.

    Google Scholar 

  101. R. S. Burden and H. F. Taylor, Xanthoxin and Abscisic Acid, Pure & Appl. Chem., 1976, 47, 203-209, and references cited.

    Google Scholar 

  102. Paul M. Dewick, The Biosynthesis of C5-C25 Terpenoid Compounds, Nat. Prod. Rep., 1999, 16, 91-130; pertinent page 117.

    Google Scholar 

  103. R. S. Burden and H. F. Taylor, The Structure and Chemical Transformations of Xanthoxin, Tetrahedron Lett., 1970, 4071-4074.

    Google Scholar 

  104. J. W. Cornforth, W. Draber, B. V. Milborrow, and G. Ryback, Absolute Stereochemistry of (+)-Abscisin II, Chem. Comm., 1967, 114-116.

    Google Scholar 

  105. Sachihiko Isoe, Suong Be Hyeon, Shigeo Katsumura, and Takeo Sakan, Photo-oxygenation of Carotenoids. II. The Absolute Configuration of Loliolide and Dihydroactinidiolide, Tetrahedron Lett., 1972, 2517-2520.

    Google Scholar 

  106. Takayuki Oritani and Kyohei Yamashita, Synthesis of Optically Active Abscisic acid and Its Analogs, ibid., 1972, 2521-2624.

    Google Scholar 

  107. Masato Koreeda, George Weiss, and Koji Nakanishi, Absolute Configuration of Natural (+)-Abscisic Acid, J. Am. Chem. Soc., 1973, 95, 239-240.

    Article  CAS  Google Scholar 

  108. James A. Dale and Harry S. Mosher, Nuclear Magnetic Resonance Enantiomer Reagents. Configurational Correlation via Nuclear Magnetic Resonance Chemical Shifts of Diastereomeric Mandelate, O-Methyl Mandelate, and α-Methoxy-α-trifluoromethyl-phenylacetate (MTPA) Esters, J. Am. Chem. Soc., 1973, 95, 512-519.

    Article  CAS  Google Scholar 

  109. Nobuyuki Harada and Koji Nakanishi, The Exciton Chirality Method and Its Application to Configurational and Conformational Studies of Natural Products, Accounts Chem. Res., 1972, 5, 257-263.

    Article  CAS  Google Scholar 

  110. Nobuyuki Harada, Absolute Configuration of (+)-trans-Abscisic Acid as Determined by a Quantitative Application of the Exciton Chirality Method, J. Am. Chem. Soc., 1973, 95, 240-242.

    Article  CAS  Google Scholar 

  111. G. Rybach, Revision of the Absolute Configuration of (+)-Abscisic Acid, J. C. S. Chem. Comm.., 1972, 1190-1191.

    Google Scholar 

  112. Masahiko Okamoto, Nobuhiro Hirai, and Koichi Koshimizu, Biosynthesis of Abscisic Acid from α-Ionylidecthanol in Cercospora pini-densiflorae, Phytochmistry, 1988, 27,

    Google Scholar 

  113. G. Bringmann, C. Gunther, M. Ochse, O. Schupp and S. Tasla, Biaryls in Nature, A Multi-facetted Class of Stereochemically, Biosynthetically and Pharmacologically Intriguing Secondary Metabolites, Fortschr. Chem. org. Naturstoffe, (Eds. W. Herz, H. Falk, G. W. Kirby and R. E. Moore), 2001, 82, 1-291, pertinent pp. 5,10, 38-40, 46.

    Google Scholar 

  114. R. Tyson, Chem. Ind. (London), 1988, 118.

    Google Scholar 

  115. P. Kovacic, Mechanism of Drug and Toxic Actions of Gossypol : Focus on Reactive Oxygen Species and Electron Transfer. Curr. Med. Chem., 2003, 10, 2711-2718.

    Article  CAS  Google Scholar 

  116. Li Huang, Y-K. Si, G. Snatzke, D-K. Zheng, and J. Zhou, Absolute Configuration of Gossypol, Coll. Czech. Chem. Commun. 1988, 53, 2644.

    Google Scholar 

  117. Liliane Lacombe, Attribution Complete des Signaux du Spectre de RMN 13C du Gossypol aL’aide des Techniques a Deux Dimensions, J. Nat. Prod. 1987, 50, 277-280.

    Article  CAS  Google Scholar 

  118. Raffaello Mesciadri, Werner Angst, and Duilio Arigoni, A Revised Scheme for the Biosynthesis of Gossypol, J. Chem Soc. Chem. Commun., 1985, 1573-1574.

    Google Scholar 

  119. Zhi-Jun Wu, Xi-Ke Xu, Yun-Heng Shen, Juan Su, Jun-Mian Tian, Shuang Liang, Hui-Liang Li, Rui-Hui Liu, and Wei-Dong Zhang, Ainsliadimer A, A New Sesquiterpene Lactone Dimer with an Unusual Carbon Skeleton from Ainsliasea macrocephala, Org Lett, 2008, 10, 2397-2400 and references cited.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talapatra, S.K., Talapatra, B. (2015). Sesquiterpenoids (C15). In: Chemistry of Plant Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_7

Download citation

Publish with us

Policies and ethics