Skip to main content

Natural Products in the Parlor of Pharmaceuticals

Abstract

Whenever there is life there are diseases, decay, and death. Death is the most inevitable biological event of a living system. Since life is the most precious gift of Nature, people want to preserve it as along as possible. In an endeavor to arrest the approach of death, our ancestors had not only to withstand the fury of Nature but also had to fight against diseases and decay. People were thus in search of remedial measures since the dawn of human intellect. The relationship of man and Nature was symbiotic and the immediate source of such remedial measures had been the forests, the home of our ancestors. They used to roam in and around the forests, and through thousands of years of interactions with Nature by trial and error methods, and under the pressure of experience and need they could discover a large number of plants with varying healing properties. These plants are referred to as the medicinal plants, and the people having the knowledge of their curative applications were known as medicine men. Thus a wealth of information on the curative properties of plants resulted.

Keywords

  • Antimalarial Activity
  • Herbal Drug
  • Sodium Salicylate
  • Indole Alkaloid
  • Pain Reliever

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

“I do not want to die in this beautiful world,

I want to live amongst the human beings.”

Rabindranath Tagore (1861–1941, NL 1913)

(translated from Bengali by the authors)

“No one wants to die. Even people who want to go to heaven don’t

want to die to get there. And yet death is the destination we all share.”

Steve Jobs (1955–2011)

(Convocation Speech at Stanford University on 12 June, 2005)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P. Ray and H. N. Gupta, “Caraka Samhita (A Scientific Synopsis)”, Indian National Science Academy, New Delhi, 1965.

    Google Scholar 

  2. P. Ray, H. N. Gupta and Mira Ray, Susruta Samhita (A Scientific Synopsis)”, Indian National Science Academy, New Delhi, 1980.

    Google Scholar 

  3. Sukh Dev, Prime Ayurvevdic Plant Drugs – A Modern Scientific Appraisal, Ane Books Pvt. Ltd., New Delhi, 2012, 2nd Edition.

    Google Scholar 

  4. Koji Nakanishi, An Historical Perspective of Natural Products Chemistry in Comprehensive Natural Products Chemistry, Eds. Sir Derck Barton and Koji Nakanishi, Vol 2, 1999, pp XXI–XXXVIII.

    Google Scholar 

  5. Paluther (Artemether) Product Monograph, Rhöne-Paulene (India) Limited. This monograph with cited references was dedicated to the memory of Sir Ronald Ross when the world celebrated in 1997 the Centenary of the discovery (in 1897) of malaria parasite by him.

    Google Scholar 

  6. Wang Meng, Ren Xiaoliang, Gao Xiumel, Franco Francesco Vincieri and Anna Rita Bilia, Stability of Active Ingredients of Traditional Chinese Medicine (TCM), Nat. Prod. Commun., 2009, 4, 1761-1776.

    Google Scholar 

  7. Ginseng: The Elixir of Life, Korea Traveler (magazine of Tourism), 1987 (June/July), 16-18.

    Google Scholar 

  8. G. M. Cragg and D. J. Newman, Natural Product Sources of Drugs: Plants, Microbes, Marine Organisms, and Animals in Comprehensive Medicinal Chemistry, Vol 1, pp. 356-403.

    Google Scholar 

  9. Nitya Anad, Chairman’s Address: Herbal Drugs and Traditional Medicine: Perspective in the New Millennium, in Round Table Conference Series, No. 17, (25 March, 2006), Herbal Drugs – Perspectives in the New Millennium, Eds. S. S. Handa, C. K. Katiyar and O. P. Sood, Ranbaxy Science Foundation, New Delhi, India.

    Google Scholar 

  10. Sukh Dev, Ethnotherapeutics and Modern Drug Development: The Potential of Ayurveda, Current Science, 1997, 73, 909–928.

    Google Scholar 

  11. Sukh Dev, Proc. Indian Nat Sci. Acad., Sec. A, 1988, 54, 12

    Google Scholar 

  12. Sunil Kumar Talapatra, Some Useful Plant-Derived Drugs: Importance of Enantiomeric Stereospecificity, J. Indian Chem. Soc., 2003, 80, 731–743 Presidential address delivered at the 39th Annual Convention of Chemists, organized by the Indian Chemical Society at the Nagarjuna University, Nagarjunanagar, India, on December 23, 2002.

    Google Scholar 

  13. Jonathan L. Hartwell and Anthony W. Schrecker, Components of Podophyllum. V. The Constitution of Podophyllotoxin, J. Am. Chem. Soc., 1951, 73, 2909–2916.

    CrossRef  CAS  Google Scholar 

  14. Walter J. Gensler and Christos D. Gatsonis, Synthesis of Podophyllotoxin, J. Am. Chem. Soc., 1962, 84, 1748–1749.

    CrossRef  CAS  Google Scholar 

  15. L. S. Thurston, Y. Imakura, M. Haruna, De-Hua Li, Zong-Chao Lin, Su-Ying Lin, Yung-Chi-Cheng, and Kuo-Hsiung Lee, J. Med. Chem., 1989, 32, 604.

    CrossRef  CAS  Google Scholar 

  16. Petr Dzubak, Marian Hajduch, David Vydra, Alica Hustova, Miroslav Kvasnica, David Biedermann, Lenka Marcova, Milan Urban and Jan Sarek, Pharmacological Activities of Natural Triterpenoids and Therapeutic Implications, Nat. Prod. Rep., 2006, 23, 394–411.

    CrossRef  CAS  Google Scholar 

  17. Lisa S. Fernandez, Malcolm S. Buchanani, Anthony R. Carroll, Yun Jiang Feng, Ronald J. Quinn and Vicky M. Avery, Flinderoles A-C. Antimalarial Bis-indole Alkaloids from Flindersia species, Org. Lett., 2009, 11, 329–332.

    CrossRef  CAS  Google Scholar 

  18. Dattatraya H. Dethe, Rohan D Erande and Alok Ranjan, Biomimetic Total Syntheses of Filnderoles B and C, J. Am. Chem. Soc., 2011, 133, 2864–2867.

    CrossRef  Google Scholar 

  19. J. S. Glasby, Encyclopedia of Terpenoids, Wiley, New York, 1980, p. 1956.

    Google Scholar 

  20. Gautam Brahmachari, Natural Products in the Drug Discovery Programmes in Alzheimer’s: Impacts and Prospects, Asia Pacific Biotech. News, Singapore, 2011, 15,Sept. Issue, pp 26–38.

    Google Scholar 

  21. Z. Valenta, H. Yoshimura, E. F. Rogers, M. Ternbah, and K. Wiesner, The Structure of Selagine, Tetrahedron Lett., 1960, 26–33.

    Google Scholar 

  22. F. Yamada, A. P. Kozikowski, L. R. Reddy, Yuan-Ping Pang, J. H. Miller and M. Mckinney, A Route to Optically Pure (−)-Huperzine A : Molecular Modeling and in Vitro Pharmacology, J. Am. Chem. Soc., 1991, 113, 4695–4696.

    CrossRef  CAS  Google Scholar 

  23. Alan P. Kozikowski, Yan Xia, E. Rajaratham Reddy, Werner Tuckmantel, Israel Hanin and X. C. Tang, Synthesis of Huperzine A, Its Analogs, and Their Anticholinesterase Activity, J. Org. Chem., 1991, 56, 4636–4645.

    CrossRef  CAS  Google Scholar 

  24. Jia-Sen Liu, Yuan-Lang Zhu, Chao-Mei Yu, You-Zuo Zhou, Yan-Yi Han, Feng-Wu Wu, and Bao-Feng Qi, The Structures of Huperzine A and B, Two New Alkaloids Exhibiting Marked Anticholinesterase Activity, Can. J. Chem., 1986, 64, 837–839.

    CrossRef  CAS  Google Scholar 

  25. WHO Food Additive, WHO, Geneva, 1999 (on-line).

    Google Scholar 

  26. V. D. Patil, U. R. Nayak, and Sukh Dev, Chemistry of Ayurvedic Crude Drugs-I. Guggulu (Resin from Commiphora mukul)-1: Steroidal Constituents, Tetrahedron, 1972, 28, 23412352.

    Google Scholar 

  27. M. P. Cava and B. Weinstein, Chem. Ind. (London), The Structure of Andrographolide 1959, 851.

    Google Scholar 

  28. M. P. Cava, W. R. Chan, L. J. Haynes, L. F. Johnson and B. Weinstein, The Structure of Andrographolide, Tetrahedron, 1962, 18, 397–403.

    CrossRef  CAS  Google Scholar 

  29. I. Kitagawa, K. Hine, T. Nishimura, E. Mukai, I. Yosioka, H. Inouye, and T. Yoshida, Picroside I: A New Bitter Principle of Picrorhiza kurooa (Scrophulariaceae), Tetrahedron Lett., 1969, 3837–3840.

    Google Scholar 

  30. Dictionary of Organic Compounds, Ed. Buckingham, Chapman and Hall, London, 5th edn., 7th Supplement, 1989, p. 88.

    Google Scholar 

  31. F. M. Dean, Naturally Occurring Coumarins, Fortschr. Chem. Org. Naturstoffe, 1952, 9, 226–291.

    Google Scholar 

  32. Leonard R. Worden, Kurt Dunn Kaufman, James A. Weis and Thomas K. Schaaf, Synthetic Furocoumarins, IX. New Synthetic Route to Psoralen, J. Org. Chem., 1969, 34, 2311.

    Google Scholar 

  33. G. Mehta, U. R. Nayak nd Sukh Dev, Meroterpenoids - I Psoralea corylifolia Linn.-1. Bakuchiol, A Novel Monoterpene Phenol, Tetrahedron, 1973, 29, 1119–1125.

    CrossRef  CAS  Google Scholar 

  34. A. S. C. Prakasa Rao, V. K. Bhalla, U. R. Nayak, and Sukh Dev, Monoterpenoids – II Psoralea corylifolia Linn. – 2. Absolute Configuration of (+)-Bakuchiol, Tetrahedron, 1973, 29, 1127–1130.

    Google Scholar 

  35. N. P. Damodaran and Sukh Dev, Meroterpenoids – III Psoralea corylifolia Linn. – 3. Synthesis of (±)-Bakuchiol Methyl Ether, Tetrahedron, 1973, 29, 1209–1213.

    Google Scholar 

  36. Dictionary of Organic Compounds, Ed. Buckingham, Chapman and Hall, London, 1982, Vol. 4, 5th edn., p. 4475.

    Google Scholar 

  37. S. MacKinnon, T. Durst, J. T. Arnason, C. Angerhofer, J. Pezzuto, P. E. Sanchez-Vindas and L. J. Poveda, Antimalarial Activity of Tropical Meliaceae Extracts and Gedunin Derivatives, J. Nat. Prod., 1997, 60, 336–341.

    CrossRef  CAS  Google Scholar 

  38. Sami A. Khalid, Helmut Duddeck, and Manuel Gonzalez-Sierra, Isolation and Characterization of an Antimalarial Agent of the Neem Tree Azadirachta indica, J. Nat. Prod., 1989, 52, 922–927.

    CrossRef  Google Scholar 

  39. Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry (A Molecular and Biochemical Approach), Oxford University Press, 2005.

    Google Scholar 

  40. Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Second Edition, Elsevier, 2004, p 280.

    Google Scholar 

  41. Mary Kamienski and Jim Keogh, Pharmacology McGraw-Hill, New York, New Delhi 2006.

    Google Scholar 

  42. Theodore M. Brody, Joseph Larner, Kenneth P. Minneman and Harold C. Neu, Human Pharmacology, Second Edition, Mosby, London, New York, Tokyo, 1995.

    Google Scholar 

  43. Graham L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, Indian Edition, 2009.

    Google Scholar 

  44. Leon Shargel, Susanna Wu-pong, and Andrew B. C. Yu, Applied Biopharmaceutics & Pharmacokinetics, McGraw Hill, 5th Edn. Boston, 2005, Chapter7, pp161-184.

    Google Scholar 

  45. Malcolm Rawland and Thomas N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, Wolter Kluwer/Lippincott Williams& Wilkins 4th Edn., Chapter 8, pp 217–244; Chapter 9, pp 245–258.

    Google Scholar 

  46. Sophie Jourdier, A Miracle Drug, Chem. Brit,1999, February Issue, 33–35, and references cited.

    Google Scholar 

  47. K. C. Nicolaou and T. Montagnon, Molecules That Changed the World, Wiley-VCH, 2008, pp. 2028.

    Google Scholar 

  48. Sir R. N. Chopra, I. C. Chopra, K. L. Handa, L. D. Kapur, Indigenous Drugs of India, Academic Publishers, Kolkata, 2nd edition, 3rd reprint, 2006, p. 179.

    Google Scholar 

  49. John R. Vane, Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs, Nature (New Biol.), 1971, 231, 232–235.

    Google Scholar 

  50. David L. DeWitt, E. A. El-Harith, Stacey A. Kraemer, Martha J. Andrews, Eveline F. Yao, Robert. L. Armstrong, and William L. Smith, The Aspirin and Heme-binding Sites of Ovine and Murine Prostaglandin Endoperoxide Synthases, J. Biol. Chem., 1990, 265, 5192–5198.

    Google Scholar 

  51. G. Phillip Hochgesang, Jr., Scott W. Rowlinson, and Lawrence J. Marnett, Tyrosine-385 is Critical for Acetylation of Cyclooxygenase-2 by Aspirin, J. Am. Chem. Soc. , 2000, 122, 6514–6515.

    Google Scholar 

  52. Gerald J. Roth, Nancy Stanford, and Philip W. Majerus, Acetylation of Prostaglandin Synthase by Aspirin, Proc. Nat. Acad. Sci., USA, 1975, 72, 3073–3076.

    Google Scholar 

  53. L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th ed., Collier-Macmillan, London, 1970.

    Google Scholar 

  54. Antony R. Butler and Yu-Lin-Wu, Artemisinin (Qinghaosu): A New Type of Antimalerial Drug, Chem. Soc. Rev., 1992, 85–90.

    Google Scholar 

  55. Resistance Resistant Drug, Research, Chemistry World, May 2013, 10, 26.

    Google Scholar 

  56. John Weisner, Regina Ortmann, Hassan Vomma, and Martin Schlitzar, New Antimalarial Drugs, Angew. Chem. Int. Ed., 2003, 42, 5274–5293.

    CrossRef  Google Scholar 

  57. Yuxiang Dong, and 19 co-authors, The Structure –Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277), J. Med. Chem., 2010, 53, 481–491.

    Google Scholar 

  58. S. Heinhorst and C. G. Cannon, Environmental Problems and New Hope for the Treatment of Malaria, J. Chem. Educ., 2005, 62, 186–188.

    CrossRef  Google Scholar 

  59. Jonathan L. Vennerstron, and 18 co-authors, Identification of an Antimalarial Synthetic Trioxolane Drug Development Candidate, Nature, 2004, 430, 900–904.

    CrossRef  Google Scholar 

  60. Isabelle Weissbuch and Leslie Leiserowitz, Interplay between Malaria, Crystalline Hemozoin Fornation, and Antimalarial Drug Action and Design, Chem. Rev., 2008, 108, 48994914, and references 7–10 cited therein.

    Google Scholar 

  61. Petr Dzubak, Marian Hajduch, David Vydra, Alica Hustova, Miroslav Kvasnica, David Biedermann, Lenka Markova, Milan Urban, and Jan Sarek, Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications, Nat. Prod. Rep., 2006, 23, 394–411.

    CrossRef  CAS  Google Scholar 

  62. K. C. Nicolaou and S. A. Snyder, Vinblastine in Classics in Total Synthesis. II, Wiley VCH, Weinheim, 2003, pp. 505–530.

    Google Scholar 

  63. Paul Jenkins, Taxol Branches Out, Chem. Brit., 1996, November issue, pp. 43–46.

    Google Scholar 

  64. Monroe E. Wall, Camptothecin and Taxol: Discovery to Clinic, Med. Res. Rev., 1998, 18, 299–314.

    Google Scholar 

  65. W. A. Denny, Deoxyribonucleic Acid Topoisomerase in Comprehensive Medicinal Chemistry II, Editors-in-Chief: John B. Taylor & David J. Triggle, Volume Editors: Jacob J. Plattner & Monoj C. Desai, Vol 7, 2007, Elsevier, pp 111–127.

    Google Scholar 

  66. Gordon M. Cragg, Paclitaxel (Taxol): A Success Story with Valuable Lessions for Natural Product drug Discovery and Development, Med. Res. Rev., 1998, 18, 315331.

    Google Scholar 

  67. David G. I. Kingston, The Shape of Things to Come: Structural and Synthetic Studies of Taxol and Related Compounds, Phytochemistry, 2007, 68, 1844–1854. (A review on the history of the development of taxol as an anticancer drug)

    Google Scholar 

  68. Scott A. Johnson, Ana A. Alcaraz, and James P. Snyder, T-Taxol and the Electron Crystallographic Density in β-Tubulin, Organic Letters, 2005, 7, 5549–5552.

    CrossRef  CAS  Google Scholar 

  69. Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Second Edition, Elsevier, 2004. p. 23 (Fig. 2.2)

    Google Scholar 

  70. Mimin Wang, Ben Cornett, Jim Nettles, Dennis C. Liotta, and James P. Snyder, The Oxetane Ring in Taxol, J. Org. Chem., 2000, 65, 1059–1068, and references cited.

    Google Scholar 

  71. Francoise Gueritte-Voegelein, Daniel Guenard, Francois Lavelle, Marie-Therese Le Goff, Lydie Mangatal, and Pierre Potier, Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity, J. Med. Chem., 1991, 34, 992–998.

    Google Scholar 

  72. Mark S. Butler, Natural Products to Drugs. Natural Product Derived Compounds in Clinical Trials, Nat. Prod. Rep., 2005, 22, 162–195.

    CrossRef  CAS  Google Scholar 

  73. Ramesh C. Pandey, Prospecting for Potentially New Pharmaceuticals from Natural Sources, Med. Res. Rev., 1998, 18, 333–346.

    CrossRef  Google Scholar 

  74. G. Chakraborty, S. Sengupta and B. Bhattacharyya, Thermodynamics of Colchinoid-Tubulin Interactions- Role of B Ring and C7 Substituent, J. Biol. Chem., 1996, 271, 2897–2901.

    CrossRef  Google Scholar 

  75. Dulal Panda, Janet E. Daijo, Mary Ann Jordan and Leslie Wilson, Kinetic Stabilization of Microtubule Dynamics at Steady State in vitro by Substoichiometric Concentrations of Tubulin-Colchicine Complex, Biochemistry, 1995, 34, 9921–9929.

    Google Scholar 

  76. T. N. Margulis, Structure of the Miotic Spindle Inhibitor Colcemid, N-Desacetyl-N-Methylcolchicine, J. Am. Chem. Soc., 1974, 96, 899

    Google Scholar 

  77. Hans-Walter Heldt, ‘Plant Biochemistry’, Third Edition, 2005, Elsevier, First Printed in India 2005, p. 492.

    Google Scholar 

  78. R. N. Chopra, I. C. Chopra, K. L. Handa and L. D. Kapur, ‘Indigenous Drugs of India’, Academic Publishers, Kolkata, Third Print 2006, p. 8. pp. 397–401.

    Google Scholar 

  79. Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry (A Molecular and Biochemical Approach), Oxford University, 2005, p. 226.

    Google Scholar 

  80. For agonist and antagonist terminology see Theodore M. Brody, Joseph Larner, Kenneth P. Minneman and Harold C. New, Human Pharmacology, Second Edition, 1994, Mosby, Boston, Tokyo, Toronto, Chapter 2 (p. 9–23) and Chapter 3 (p. 25–32).

    Google Scholar 

  81. Marshall Gates, Analgesic Drugs, Scientific American, 1966, 131–137, pertinent page 132–133.

    Google Scholar 

  82. Mark S. Butler, Natural Products to Drugs : Natural Product Derived Compounds in Clinical Trails, Nat. Prod. Rep., 2005, 22, 162–195.

    CrossRef  Google Scholar 

  83. Guo-wei Qin and Ren-Sheng Xu, Recent Advances on Bioactive Natural Products from Chinese Medicinal Plants, Med. Res. Revs., 1998, 18, 375–382.

    CrossRef  CAS  Google Scholar 

  84. Goutam Brahmachari, Natural Products in the Drug Discovery Programmes in Alzheimer’s: Impacts and Progress, Asia Pacific Biotech. News, Singapore, 2011, 15, (Sept. issue), p. 26–38.

    Google Scholar 

  85. Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry, A Molecular and Biochemical Approach, Oxford University Press, 2005, p. 292–295.

    Google Scholar 

  86. T. Motai, A. Dakonya and S. Kitanaka, Sesquiterpene Coumarins from Ferula fukanensis and Nitric Oxide production Inhibitory Effects, J. Nat. Prod., 2004, 67, 432–436.

    CrossRef  CAS  Google Scholar 

  87. K. K. Jung, H. S. Lee, J. Y. Cho, W. C. Shin, M. H. Rhee, T. G. Kim, J. H. Kang, S. H. Kim, S. Hong and S. Y. Kang, Inhibitory Effect of Curcumin on Nitric Oxide Production from Lipapolysaccharide-Activated Primary Microglia, Life Sci., 2006, 79, 2022–2031.

    CrossRef  CAS  Google Scholar 

  88. DeFatima and Madolo, Natural Products as NOS Inhibitors in Natural Products Chemistry, Biochemistry and Pharmacology, Ed. Gautam Brahmachari, 2009, Chapter 2, pp. 21–53.

    Google Scholar 

  89. Michael A. Palladino, Frances Rena Bahjat, Emmanuel A. Theodorakis and Lyle L. Moldawar, Anti TNT-α Therapies : The Next Generation, Drug Discovery, 2003, 2, 736–746 pertinent pp. 742–743.

    Google Scholar 

  90. R. N. Chopra, I. C. Chopra, K. L. Handa and L. D. Kapur, ‘Indigenous Drugs of India’, Academic Publishers, Kolkata, Third Print 2006, p 61–63.

    Google Scholar 

  91. Peter Atherton, First Aid Plant, Chem. Brit., May Issue, 1998, 33–36.

    Google Scholar 

  92. Sunil K.. Talapatra, Asok K. Mallik, and Bani Talapatra, A New Hydroxyfuranoflavone and Aurantiamide Acetate, A Dipeptide from the Flowers of Pongamia glabra, Phytochemistry,1980, 19, 1199–1202.

    Google Scholar 

  93. Sunil K. Talapatra, Asok K. Mallik, and Bani Talapatra, Isopongaglabol and 6-Methoxyisopongaglabol, Two New Hydroxyfuranoflavones from Pongamia glabra, Phytochemistry, 1982, 21, 761–766.

    Google Scholar 

  94. An Ullmann’s Encyclopedia, Industrial Organic Chemistry, Vol.8, Wiley-VCH, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talapatra, S.K., Talapatra, B. (2015). Natural Products in the Parlor of Pharmaceuticals. In: Chemistry of Plant Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_33

Download citation