Natural Products in the Parlor of Pharmaceuticals

  • Sunil Kumar Talapatra
  • Bani Talapatra


Whenever there is life there are diseases, decay, and death. Death is the most inevitable biological event of a living system. Since life is the most precious gift of Nature, people want to preserve it as along as possible. In an endeavor to arrest the approach of death, our ancestors had not only to withstand the fury of Nature but also had to fight against diseases and decay. People were thus in search of remedial measures since the dawn of human intellect. The relationship of man and Nature was symbiotic and the immediate source of such remedial measures had been the forests, the home of our ancestors. They used to roam in and around the forests, and through thousands of years of interactions with Nature by trial and error methods, and under the pressure of experience and need they could discover a large number of plants with varying healing properties. These plants are referred to as the medicinal plants, and the people having the knowledge of their curative applications were known as medicine men. Thus a wealth of information on the curative properties of plants resulted.


Antimalarial Activity Herbal Drug Sodium Salicylate Indole Alkaloid Pain Reliever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P. Ray and H. N. Gupta, “Caraka Samhita (A Scientific Synopsis)”, Indian National Science Academy, New Delhi, 1965.Google Scholar
  2. 2.
    P. Ray, H. N. Gupta and Mira Ray, Susruta Samhita (A Scientific Synopsis)”, Indian National Science Academy, New Delhi, 1980. Google Scholar
  3. 3.
    Sukh Dev, Prime Ayurvevdic Plant Drugs – A Modern Scientific Appraisal, Ane Books Pvt. Ltd., New Delhi, 2012, 2nd Edition.Google Scholar
  4. 4.
    Koji Nakanishi, An Historical Perspective of Natural Products Chemistry in Comprehensive Natural Products Chemistry, Eds. Sir Derck Barton and Koji Nakanishi, Vol 2, 1999, pp XXI–XXXVIII.Google Scholar
  5. 5.
    Paluther (Artemether) Product Monograph, Rhöne-Paulene (India) Limited. This monograph with cited references was dedicated to the memory of Sir Ronald Ross when the world celebrated in 1997 the Centenary of the discovery (in 1897) of malaria parasite by him.Google Scholar
  6. 6.
    Wang Meng, Ren Xiaoliang, Gao Xiumel, Franco Francesco Vincieri and Anna Rita Bilia, Stability of Active Ingredients of Traditional Chinese Medicine (TCM), Nat. Prod. Commun., 2009, 4, 1761-1776.Google Scholar
  7. 7.
    Ginseng: The Elixir of Life, Korea Traveler (magazine of Tourism), 1987 (June/July), 16-18.Google Scholar
  8. 8.
    G. M. Cragg and D. J. Newman, Natural Product Sources of Drugs: Plants, Microbes, Marine Organisms, and Animals in Comprehensive Medicinal Chemistry, Vol 1, pp. 356-403.Google Scholar
  9. 9.
    Nitya Anad, Chairman’s Address: Herbal Drugs and Traditional Medicine: Perspective in the New Millennium, in Round Table Conference Series, No. 17, (25 March, 2006), Herbal Drugs – Perspectives in the New Millennium, Eds. S. S. Handa, C. K. Katiyar and O. P. Sood, Ranbaxy Science Foundation, New Delhi, India.Google Scholar
  10. 10.
    Sukh Dev, Ethnotherapeutics and Modern Drug Development: The Potential of Ayurveda, Current Science, 1997, 73, 909–928.Google Scholar
  11. 11.
    Sukh Dev, Proc. Indian Nat Sci. Acad., Sec. A, 1988, 54, 12Google Scholar
  12. 12.
    Sunil Kumar Talapatra, Some Useful Plant-Derived Drugs: Importance of Enantiomeric Stereospecificity, J. Indian Chem. Soc., 2003, 80, 731–743 Presidential address delivered at the 39th Annual Convention of Chemists, organized by the Indian Chemical Society at the Nagarjuna University, Nagarjunanagar, India, on December 23, 2002.Google Scholar
  13. 13.
    Jonathan L. Hartwell and Anthony W. Schrecker, Components of Podophyllum. V. The Constitution of Podophyllotoxin, J. Am. Chem. Soc., 1951, 73, 2909–2916.CrossRefGoogle Scholar
  14. 14.
    Walter J. Gensler and Christos D. Gatsonis, Synthesis of Podophyllotoxin, J. Am. Chem. Soc., 1962, 84, 1748–1749.CrossRefGoogle Scholar
  15. 15.
    L. S. Thurston, Y. Imakura, M. Haruna, De-Hua Li, Zong-Chao Lin, Su-Ying Lin, Yung-Chi-Cheng, and Kuo-Hsiung Lee, J. Med. Chem., 1989, 32, 604.CrossRefGoogle Scholar
  16. 16.
    Petr Dzubak, Marian Hajduch, David Vydra, Alica Hustova, Miroslav Kvasnica, David Biedermann, Lenka Marcova, Milan Urban and Jan Sarek, Pharmacological Activities of Natural Triterpenoids and Therapeutic Implications, Nat. Prod. Rep., 2006, 23, 394–411.CrossRefGoogle Scholar
  17. 17.
    Lisa S. Fernandez, Malcolm S. Buchanani, Anthony R. Carroll, Yun Jiang Feng, Ronald J. Quinn and Vicky M. Avery, Flinderoles A-C. Antimalarial Bis-indole Alkaloids from Flindersia species, Org. Lett., 2009, 11, 329–332.CrossRefGoogle Scholar
  18. 18.
    Dattatraya H. Dethe, Rohan D Erande and Alok Ranjan, Biomimetic Total Syntheses of Filnderoles B and C, J. Am. Chem. Soc., 2011, 133, 2864–2867.CrossRefGoogle Scholar
  19. 19.
    J. S. Glasby, Encyclopedia of Terpenoids, Wiley, New York, 1980, p. 1956.Google Scholar
  20. 20.
    Gautam Brahmachari, Natural Products in the Drug Discovery Programmes in Alzheimer’s: Impacts and Prospects, Asia Pacific Biotech. News, Singapore, 2011, 15,Sept. Issue, pp 26–38.Google Scholar
  21. 21.
    Z. Valenta, H. Yoshimura, E. F. Rogers, M. Ternbah, and K. Wiesner, The Structure of Selagine, Tetrahedron Lett., 1960, 26–33.Google Scholar
  22. 22.
    F. Yamada, A. P. Kozikowski, L. R. Reddy, Yuan-Ping Pang, J. H. Miller and M. Mckinney, A Route to Optically Pure (−)-Huperzine A : Molecular Modeling and in Vitro Pharmacology, J. Am. Chem. Soc., 1991, 113, 4695–4696.CrossRefGoogle Scholar
  23. 23.
    Alan P. Kozikowski, Yan Xia, E. Rajaratham Reddy, Werner Tuckmantel, Israel Hanin and X. C. Tang, Synthesis of Huperzine A, Its Analogs, and Their Anticholinesterase Activity, J. Org. Chem., 1991, 56, 4636–4645.CrossRefGoogle Scholar
  24. 24.
    Jia-Sen Liu, Yuan-Lang Zhu, Chao-Mei Yu, You-Zuo Zhou, Yan-Yi Han, Feng-Wu Wu, and Bao-Feng Qi, The Structures of Huperzine A and B, Two New Alkaloids Exhibiting Marked Anticholinesterase Activity, Can. J. Chem., 1986, 64, 837–839.CrossRefGoogle Scholar
  25. 25.
    WHO Food Additive, WHO, Geneva, 1999 (on-line).Google Scholar
  26. 26.
    V. D. Patil, U. R. Nayak, and Sukh Dev, Chemistry of Ayurvedic Crude Drugs-I. Guggulu (Resin from Commiphora mukul)-1: Steroidal Constituents, Tetrahedron, 1972, 28, 23412352.Google Scholar
  27. 27.
    M. P. Cava and B. Weinstein, Chem. Ind. (London), The Structure of Andrographolide 1959, 851.Google Scholar
  28. 28.
    M. P. Cava, W. R. Chan, L. J. Haynes, L. F. Johnson and B. Weinstein, The Structure of Andrographolide, Tetrahedron, 1962, 18, 397–403.CrossRefGoogle Scholar
  29. 29.
    I. Kitagawa, K. Hine, T. Nishimura, E. Mukai, I. Yosioka, H. Inouye, and T. Yoshida, Picroside I: A New Bitter Principle of Picrorhiza kurooa (Scrophulariaceae), Tetrahedron Lett., 1969, 3837–3840.Google Scholar
  30. 30.
    Dictionary of Organic Compounds, Ed. Buckingham, Chapman and Hall, London, 5th edn., 7th Supplement, 1989, p. 88.Google Scholar
  31. 31.
    F. M. Dean, Naturally Occurring Coumarins, Fortschr. Chem. Org. Naturstoffe, 1952, 9, 226–291.Google Scholar
  32. 32.
    Leonard R. Worden, Kurt Dunn Kaufman, James A. Weis and Thomas K. Schaaf, Synthetic Furocoumarins, IX. New Synthetic Route to Psoralen, J. Org. Chem., 1969, 34, 2311.Google Scholar
  33. 33.
    G. Mehta, U. R. Nayak nd Sukh Dev, Meroterpenoids - I Psoralea corylifolia Linn.-1. Bakuchiol, A Novel Monoterpene Phenol, Tetrahedron, 1973, 29, 1119–1125.CrossRefGoogle Scholar
  34. 34.
    A. S. C. Prakasa Rao, V. K. Bhalla, U. R. Nayak, and Sukh Dev, Monoterpenoids – II Psoralea corylifolia Linn. – 2. Absolute Configuration of (+)-Bakuchiol, Tetrahedron, 1973, 29, 1127–1130.Google Scholar
  35. 35.
    N. P. Damodaran and Sukh Dev, Meroterpenoids – III Psoralea corylifolia Linn. – 3. Synthesis of (±)-Bakuchiol Methyl Ether, Tetrahedron, 1973, 29, 1209–1213.Google Scholar
  36. 36.
    Dictionary of Organic Compounds, Ed. Buckingham, Chapman and Hall, London, 1982, Vol. 4, 5th edn., p. 4475.Google Scholar
  37. 37.
    S. MacKinnon, T. Durst, J. T. Arnason, C. Angerhofer, J. Pezzuto, P. E. Sanchez-Vindas and L. J. Poveda, Antimalarial Activity of Tropical Meliaceae Extracts and Gedunin Derivatives, J. Nat. Prod., 1997, 60, 336–341.CrossRefGoogle Scholar
  38. 38.
    Sami A. Khalid, Helmut Duddeck, and Manuel Gonzalez-Sierra, Isolation and Characterization of an Antimalarial Agent of the Neem Tree Azadirachta indica, J. Nat. Prod., 1989, 52, 922–927.CrossRefGoogle Scholar
  39. 39.
    Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry (A Molecular and Biochemical Approach), Oxford University Press, 2005. Google Scholar
  40. 40.
    Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Second Edition, Elsevier, 2004, p 280.Google Scholar
  41. 41.
    Mary Kamienski and Jim Keogh, Pharmacology McGraw-Hill, New York, New Delhi 2006. Google Scholar
  42. 42.
    Theodore M. Brody, Joseph Larner, Kenneth P. Minneman and Harold C. Neu, Human Pharmacology, Second Edition, Mosby, London, New York, Tokyo, 1995. Google Scholar
  43. 43.
    Graham L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, Indian Edition, 2009. Google Scholar
  44. 44.
    Leon Shargel, Susanna Wu-pong, and Andrew B. C. Yu, Applied Biopharmaceutics & Pharmacokinetics, McGraw Hill, 5th Edn. Boston, 2005, Chapter7, pp161-184.Google Scholar
  45. 45.
    Malcolm Rawland and Thomas N. Tozer, Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, Wolter Kluwer/Lippincott Williams& Wilkins 4th Edn., Chapter 8, pp 217–244; Chapter 9, pp 245–258.Google Scholar
  46. 46.
    Sophie Jourdier, A Miracle Drug, Chem. Brit,1999, February Issue, 33–35, and references cited.Google Scholar
  47. 47.
    K. C. Nicolaou and T. Montagnon, Molecules That Changed the World, Wiley-VCH, 2008, pp. 2028.Google Scholar
  48. 48.
    Sir R. N. Chopra, I. C. Chopra, K. L. Handa, L. D. Kapur, Indigenous Drugs of India, Academic Publishers, Kolkata, 2nd edition, 3rd reprint, 2006, p. 179.Google Scholar
  49. 49.
    John R. Vane, Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-like Drugs, Nature (New Biol.), 1971, 231, 232–235.Google Scholar
  50. 50.
    David L. DeWitt, E. A. El-Harith, Stacey A. Kraemer, Martha J. Andrews, Eveline F. Yao, Robert. L. Armstrong, and William L. Smith, The Aspirin and Heme-binding Sites of Ovine and Murine Prostaglandin Endoperoxide Synthases, J. Biol. Chem., 1990, 265, 5192–5198.Google Scholar
  51. 51.
    G. Phillip Hochgesang, Jr., Scott W. Rowlinson, and Lawrence J. Marnett, Tyrosine-385 is Critical for Acetylation of Cyclooxygenase-2 by Aspirin, J. Am. Chem. Soc. , 2000, 122, 6514–6515.Google Scholar
  52. 52.
    Gerald J. Roth, Nancy Stanford, and Philip W. Majerus, Acetylation of Prostaglandin Synthase by Aspirin, Proc. Nat. Acad. Sci., USA, 1975, 72, 3073–3076.Google Scholar
  53. 53.
    L. S. Goodman and A. Gilman, The Pharmacological Basis of Therapeutics, 4th ed., Collier-Macmillan, London, 1970. Google Scholar
  54. 54.
    Antony R. Butler and Yu-Lin-Wu, Artemisinin (Qinghaosu): A New Type of Antimalerial Drug, Chem. Soc. Rev., 1992, 85–90.Google Scholar
  55. 55.
    Resistance Resistant Drug, Research, Chemistry World, May 2013, 10, 26.Google Scholar
  56. 56.
    John Weisner, Regina Ortmann, Hassan Vomma, and Martin Schlitzar, New Antimalarial Drugs, Angew. Chem. Int. Ed., 2003, 42, 5274–5293.CrossRefGoogle Scholar
  57. 57.
    Yuxiang Dong, and 19 co-authors, The Structure –Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277), J. Med. Chem., 2010, 53, 481–491.Google Scholar
  58. 58.
    S. Heinhorst and C. G. Cannon, Environmental Problems and New Hope for the Treatment of Malaria, J. Chem. Educ., 2005, 62, 186–188.CrossRefGoogle Scholar
  59. 59.
    Jonathan L. Vennerstron, and 18 co-authors, Identification of an Antimalarial Synthetic Trioxolane Drug Development Candidate, Nature, 2004, 430, 900–904.CrossRefGoogle Scholar
  60. 60.
    Isabelle Weissbuch and Leslie Leiserowitz, Interplay between Malaria, Crystalline Hemozoin Fornation, and Antimalarial Drug Action and Design, Chem. Rev., 2008, 108, 48994914, and references 7–10 cited therein.Google Scholar
  61. 61.
    Petr Dzubak, Marian Hajduch, David Vydra, Alica Hustova, Miroslav Kvasnica, David Biedermann, Lenka Markova, Milan Urban, and Jan Sarek, Pharmacological Activities of Natural Triterpenoids and Their Therapeutic Implications, Nat. Prod. Rep., 2006, 23, 394–411.CrossRefGoogle Scholar
  62. 62.
    K. C. Nicolaou and S. A. Snyder, Vinblastine in Classics in Total Synthesis. II, Wiley VCH, Weinheim, 2003, pp. 505–530.Google Scholar
  63. 63.
    Paul Jenkins, Taxol Branches Out, Chem. Brit., 1996, November issue, pp. 43–46.Google Scholar
  64. 64.
    Monroe E. Wall, Camptothecin and Taxol: Discovery to Clinic, Med. Res. Rev., 1998, 18, 299–314.Google Scholar
  65. 65.
    W. A. Denny, Deoxyribonucleic Acid Topoisomerase in Comprehensive Medicinal Chemistry II, Editors-in-Chief: John B. Taylor & David J. Triggle, Volume Editors: Jacob J. Plattner & Monoj C. Desai, Vol 7, 2007, Elsevier, pp 111–127.Google Scholar
  66. 66.
    Gordon M. Cragg, Paclitaxel (Taxol): A Success Story with Valuable Lessions for Natural Product drug Discovery and Development, Med. Res. Rev., 1998, 18, 315331.Google Scholar
  67. 67.
    David G. I. Kingston, The Shape of Things to Come: Structural and Synthetic Studies of Taxol and Related Compounds, Phytochemistry, 2007, 68, 1844–1854. (A review on the history of the development of taxol as an anticancer drug)Google Scholar
  68. 68.
    Scott A. Johnson, Ana A. Alcaraz, and James P. Snyder, T-Taxol and the Electron Crystallographic Density in β-Tubulin, Organic Letters, 2005, 7, 5549–5552.CrossRefGoogle Scholar
  69. 69.
    Richard B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Second Edition, Elsevier, 2004. p. 23 (Fig. 2.2)Google Scholar
  70. 70.
    Mimin Wang, Ben Cornett, Jim Nettles, Dennis C. Liotta, and James P. Snyder, The Oxetane Ring in Taxol, J. Org. Chem., 2000, 65, 1059–1068, and references cited.Google Scholar
  71. 71.
    Francoise Gueritte-Voegelein, Daniel Guenard, Francois Lavelle, Marie-Therese Le Goff, Lydie Mangatal, and Pierre Potier, Relationships between the Structure of Taxol Analogues and Their Antimitotic Activity, J. Med. Chem., 1991, 34, 992–998.Google Scholar
  72. 72.
    Mark S. Butler, Natural Products to Drugs. Natural Product Derived Compounds in Clinical Trials, Nat. Prod. Rep., 2005, 22, 162–195.CrossRefGoogle Scholar
  73. 73.
    Ramesh C. Pandey, Prospecting for Potentially New Pharmaceuticals from Natural Sources, Med. Res. Rev., 1998, 18, 333–346.CrossRefGoogle Scholar
  74. 74.
    G. Chakraborty, S. Sengupta and B. Bhattacharyya, Thermodynamics of Colchinoid-Tubulin Interactions- Role of B Ring and C7 Substituent, J. Biol. Chem., 1996, 271, 2897–2901.CrossRefGoogle Scholar
  75. 75.
    Dulal Panda, Janet E. Daijo, Mary Ann Jordan and Leslie Wilson, Kinetic Stabilization of Microtubule Dynamics at Steady State in vitro by Substoichiometric Concentrations of Tubulin-Colchicine Complex, Biochemistry, 1995, 34, 9921–9929.Google Scholar
  76. 76.
    T. N. Margulis, Structure of the Miotic Spindle Inhibitor Colcemid, N-Desacetyl-N-Methylcolchicine, J. Am. Chem. Soc., 1974, 96, 899Google Scholar
  77. 77.
    Hans-Walter Heldt, ‘Plant Biochemistry’, Third Edition, 2005, Elsevier, First Printed in India 2005, p. 492.Google Scholar
  78. 78.
    R. N. Chopra, I. C. Chopra, K. L. Handa and L. D. Kapur, ‘Indigenous Drugs of India’, Academic Publishers, Kolkata, Third Print 2006, p. 8. pp. 397–401.Google Scholar
  79. 79.
    Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry (A Molecular and Biochemical Approach), Oxford University, 2005, p. 226.Google Scholar
  80. 80.
    For agonist and antagonist terminology see Theodore M. Brody, Joseph Larner, Kenneth P. Minneman and Harold C. New, Human Pharmacology, Second Edition, 1994, Mosby, Boston, Tokyo, Toronto, Chapter 2 (p. 9–23) and Chapter 3 (p. 25–32).Google Scholar
  81. 81.
    Marshall Gates, Analgesic Drugs, Scientific American, 1966, 131–137, pertinent page 132–133.Google Scholar
  82. 82.
    Mark S. Butler, Natural Products to Drugs : Natural Product Derived Compounds in Clinical Trails, Nat. Prod. Rep., 2005, 22, 162–195.CrossRefGoogle Scholar
  83. 83.
    Guo-wei Qin and Ren-Sheng Xu, Recent Advances on Bioactive Natural Products from Chinese Medicinal Plants, Med. Res. Revs., 1998, 18, 375–382.CrossRefGoogle Scholar
  84. 84.
    Goutam Brahmachari, Natural Products in the Drug Discovery Programmes in Alzheimer’s: Impacts and Progress, Asia Pacific Biotech. News, Singapore, 2011, 15, (Sept. issue), p. 26–38.Google Scholar
  85. 85.
    Thomas Nogrady and Donald F. Weaver, Medicinal Chemistry, A Molecular and Biochemical Approach, Oxford University Press, 2005, p. 292–295.Google Scholar
  86. 86.
    T. Motai, A. Dakonya and S. Kitanaka, Sesquiterpene Coumarins from Ferula fukanensis and Nitric Oxide production Inhibitory Effects, J. Nat. Prod., 2004, 67, 432–436.CrossRefGoogle Scholar
  87. 87.
    K. K. Jung, H. S. Lee, J. Y. Cho, W. C. Shin, M. H. Rhee, T. G. Kim, J. H. Kang, S. H. Kim, S. Hong and S. Y. Kang, Inhibitory Effect of Curcumin on Nitric Oxide Production from Lipapolysaccharide-Activated Primary Microglia, Life Sci., 2006, 79, 2022–2031.CrossRefGoogle Scholar
  88. 88.
    DeFatima and Madolo, Natural Products as NOS Inhibitors in Natural Products Chemistry, Biochemistry and Pharmacology, Ed. Gautam Brahmachari, 2009, Chapter 2, pp. 21–53.Google Scholar
  89. 89.
    Michael A. Palladino, Frances Rena Bahjat, Emmanuel A. Theodorakis and Lyle L. Moldawar, Anti TNT-α Therapies : The Next Generation, Drug Discovery, 2003, 2, 736–746 pertinent pp. 742–743.Google Scholar
  90. 90.
    R. N. Chopra, I. C. Chopra, K. L. Handa and L. D. Kapur, ‘Indigenous Drugs of India’, Academic Publishers, Kolkata, Third Print 2006, p 61–63.Google Scholar
  91. 91.
    Peter Atherton, First Aid Plant, Chem. Brit., May Issue, 1998, 33–36.Google Scholar
  92. 92.
    Sunil K.. Talapatra, Asok K. Mallik, and Bani Talapatra, A New Hydroxyfuranoflavone and Aurantiamide Acetate, A Dipeptide from the Flowers of Pongamia glabra, Phytochemistry,1980, 19, 1199–1202.Google Scholar
  93. 93.
    Sunil K. Talapatra, Asok K. Mallik, and Bani Talapatra, Isopongaglabol and 6-Methoxyisopongaglabol, Two New Hydroxyfuranoflavones from Pongamia glabra, Phytochemistry, 1982, 21, 761–766.Google Scholar
  94. 94.
    An Ullmann’s Encyclopedia, Industrial Organic Chemistry, Vol.8, Wiley-VCH, New York, 1999.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sunil Kumar Talapatra
    • 1
  • Bani Talapatra
    • 1
  1. 1.Dept. ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations