Advertisement

Polyketide Pathway. Biosynthesis of Diverse Classes of Aromatic Compounds

  • Sunil Kumar Talapatra
  • Bani Talapatra
Chapter

Abstract

In 1893, a young chemist, John Norman Collie at London University serendipitously discovered a set of reactions while establishing the structure of dehydroacetic acid [1]. On boiling dehydroacetic acid with Ba(OH)2 and its subsequent work up with acid, Collie obtained a phenol, orcinol, whose structure he could correctly assign [1, 2]. He even offered an explanation on the formation of orcinol from dehydroacetic acid (Fig. 14.1). This concept of a triketone formation as the intermediate has been the cornerstone of the polyketide pathway [3].

Keywords

Acetyl Coenzyme Shikimic Acid Pathway Cross Metathesis Polyketide Chain Catechin Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    James Staunton and Kira J. Weismann, Polyketide Biosynthesis : A Millennium Review, Nat. Prod. Res., 2001, 18, 380-416, pertinent pp 381-382.Google Scholar
  2. 2.
    N. Collie and W. S. Myers, The Formation of Orcinol and Other Condensation Products from Dehydroacetic Acid, J. Chem. Soc., 1893, 122-128.(in this paper Collie did not use full or initial of his first name)Google Scholar
  3. 3.
    John Norman Collie, Derivatives of the Multiple Keten Group J. Chem. Soc., 1907, 1806-1813.Google Scholar
  4. 4.
    A. J. Birch and F. W. Donovan, Studies in Relation of Biosynthesis III. The Structure of Eleutherinol. Aust. J. Chem., 1953, 6, 373-378.Google Scholar
  5. 5.
    A. J. Birch, Biosynthesis of Polyketides and Related Compounds, Science, 1967, 156, 202-206.CrossRefGoogle Scholar
  6. 6.
    A. J. Birch, R. A. Massy-Westropp and C. J. Moye, Chem. Ind., 1955, 683; A. J. Birch, R. A. Massy-Westropp and C. J. Moye, Studies in Relation to Biosynthesis VII. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Direckx, Aust. J. Chem., 1955, 8, 539.Google Scholar
  7. 7.
    Chaitan Khosla and Pehr B. Harburg, Modular Enzymes, Nature, 2001, 409, 247-252.Google Scholar
  8. 8.
    Jae-Cheol Jeong, Arvind Srinivasan, Sabine Grüschow, Horacio Bach, David H. Scherman, and Jonathan S. Dodick, Exploiting the Reaction Flexibility of a Type III Polyketide Synthase through in Vitro Pathway Manipulation, J. Am. Chem. Soc., 2005, 127, 64-65.Google Scholar
  9. 9.
    M. B. Austin and J. P. Noel, The Chalcone Synthase Superfamily of Type III Polyketide Synthases, Nat. Prod. Rep., 2003, 20, 79-110.Google Scholar
  10. 10.
    Jihane Achkar, Mo Xian, Huimin Zhao, and J. W. Frost, Biosynthesis of Phloroglucinol, J. Am. Chem. Soc., 2005, 127, 5332-5333.Google Scholar
  11. 11.
    Wenjuan, Zha, Zengyl Shao, John W. Frost and Huimin Zhao, Rational Pathway Engineering Type 1 Fatty Acid Synthase Allows the Biosynthesis of Triacetic Acid Lactone from D-Glucose in vivo, J. Am. Chem. Soc., 2004, 126, 4534-4535.Google Scholar
  12. 12.
    Chad A. Hansen and J. W. Frost, Deoxygenation of Polyhydroxybenzenes: An Alternative Strategy for the Benzene-Free Synthesis of Aromatic Chemicals, J. Am. Chem. Soc., 2002, 124, 5926-5927.Google Scholar
  13. 13.
    Masahiko Yamaguchi, Biomimetic Syntheses of Aromatic Natural Products via Polyketides in Studies in Natural Products Chemistry, Vol. 11, Ed. Atta-ur-Rahaman, Elsevier Science Publishers B.V., 1992.Google Scholar
  14. 14.
    T. A. Geissman and D. H. G. Crout, Organic Chemistry of Secondary Plant Metabolism, Freeman, Cooper & Company, San Francisco, 1969, p. 61-66.Google Scholar
  15. 15.
    Paul M. Dewick, Medicinal Natural Products, 3rd Edn., Wiley, 2009, pp. 39-44.Google Scholar
  16. 16.
    Joachim Schröder, Probing Plant Polyketide Biosynthesis, Nature Structural Biology, 1999, 6, 714-716 and references cited.Google Scholar
  17. 17.
    J. A. Seijas, M. P. Vazquez-Tato, and R. Carballido, Solvent-free Synthesis of Functionalized Flavones under Microwave Irradiation, J. Org. Chem., 2005, 70, 2855-2858.Google Scholar
  18. 18.
    N. Ahmed, H. Ali, and J. E. van Lier, Silica gel Supported InBr3 and InCl3: New catalysis for the Facile and Rapid Oxidation of 2′-Hydroxychalones and Flavanones to Their Corresponding Flavones under Solvent free Conditions, Tetrahedron Lett., 2005, 46, 253-256.Google Scholar
  19. 19.
    T. J. Mabry, K. R. Markhan, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer-Verlag, New York, Heidelberg, Berlin, 1970, pp 51-61.Google Scholar
  20. 20.
    Sunil K. Talapatra, Durga S. Bhar and Bani Talapatra, Flavonoid and Terpenoid Constituents of Eupatorium odoratum, Phytochemistry, 1974, 13, 284-285.CrossRefGoogle Scholar
  21. 21.
    Bimala Karmacharya, Chemical Studies on Some Medicinal Plants of Nepal, Ph.D. Thesis, Calcutta University, 1988.Google Scholar
  22. 22.
    Sunil K. Talapatra, Milan K. Pal, Asok K. Mallik, and Bani Talapatra, Chemical Constituents of Eupatorium erythropappum: Eupathronoside – A New Flavanone Glucoside and (−)- 1S,2R,4S,5R-2,5-dihydroxy-p-menthane – A New Monoterpene Diol, J. Indian Chem. Soc., 1985, 62, 999-1002.Google Scholar
  23. 23.
    Sunil K. Talapatra, Asok K. Mallik, and Bani Talapatra, Pongaglabol, A New Hydroxyfuranoflavone and Aurantiamide Acetate, A Dipeptide from the Flowers of Pongamia glabra, Phytochemistry, 1980, 19, 1199-1202.CrossRefGoogle Scholar
  24. 24.
    Andrew R. Knagg, The Biosynthesis of Shikimate Metabolites, Nat. Prod. Rep., 2001, 18, 334-355. pertinent pp 352-354.Google Scholar
  25. 25.
    Paul M. Dewick, The Biosynthesis of Shikimate Metabolites, Nat. Prod. Rep., 1998, 15, 17-58, pertinent pp. 38-44.Google Scholar
  26. 26.
    W.D. Ollis, K. L. Ormand, and I. O. Sutherland, The Oxidative Rearrangement of Chalcones by Thallic Acetate: A Chemical Analogy for Isoflavone Biosynthesis, Chem Commun., 1968, 1237-1238.Google Scholar
  27. 27.
    J. C. Fiaud, Prelog’s Method in Stereochemistry, Vol 3, Editor, Henri B. Kagan, George Thieme Publishers, Stuttgart, 1977, p. 19-49, pertinent pp. 29, 43 (compound nos. 47-49).Google Scholar
  28. 28.
    A. J. Birch, J. W. Clark Lewis and A. V. Robertson, Relative and Absolute Configuration of Catechins and Epicatechins, J. Chem. Soc. (London), 1957, 3586.Google Scholar
  29. 29.
    A. R. H. Cole, Applications of Infrared Spectroscopy in Elucidation of Structures by Physical and Chemical Methods, Part one, Editor K. W. Bentley, Interscience Publishers, John Wiley, New York, London, 1963; pertinent pages 150-151.Google Scholar
  30. 30.
    Hendrik van Rensburg, Pieter S. van Heerden, and Daneel Ferreira, Enantioselective Synthesis of Flavanoids. Part 3. trans- and cis-Flavan-3-ol Methyl Ether Acetates, J. Chem. Soc., Perkin Trans. 1, 1997, 3415-3421.Google Scholar
  31. 31.
    J. J. Nel Reinier, Hendrik van Rensburg, Pieter S. van Heerden, and Daneel Ferreira, Stereoselective Synthesis of Flavonoids. Part 8. Free Phenolic Flavan-3-ol Diastereomers, J. Chem. Res. (S), 1999, 606-607.Google Scholar
  32. 32.
    Delphine Forget-Champagne, Martin Mondon, Nadia Fonteneau, and Jean-Pierre Gession, Selective Cross-Metathesis of 2-Alkylphenols with Styrenes, Tetrahedron Lett., 2001, 42, 7229-7231.Google Scholar
  33. 33.
    Arnab K. Chatterjee, F. Dean Toste, Tae-Lim Choi, and Robert H. Grubbs, Ruthenium-Catalyzed Olefin Cross Metathesis of Styrenes as an Alternative to the Heck and Cross-Coupling Reactions, Adv. Synth. Catal., 2002, 344, 634-637.Google Scholar
  34. 34.
    Krohn Karsten, Ahmed Ishtiaq, and John Markus, Enantioselective Synthesis of Flavan-3-ols Using a Mitsunobu Cyclization, Synthesis, 2009, 779-786.Google Scholar
  35. 35.
    Karl D. Sears, R. L. Casebier, H. L. Hergert, George H. Stout, and Larry E. McCandlish, The Structure of Catechinic Acid, A Base Rearrangement Product of Catechin, J. Org. Chem., 1974, 39, 3244-3247.Google Scholar
  36. 36.
    Nadia M. Ahmad, Vincent Rodeschini, Nigel S. Simplins, Simon E. Ward, and Claire Wilson, Synthetic Studies towards Garsubellin A: Synthesis of Model Systems and Potential Mimics by Regioselective Lithiation of Bicycle[3.3.1]nonane-2,4,9-trione Derivatives from Catechinic Acid, Org. Biomol. Chem., 2007, 5, 1924-1934.Google Scholar
  37. 37.
    Yuguo Du, Guohua Wei and Robert J. Linhardt, Total Synthesis of Querectin-3-Sophorotrioside, J. Org. Chem., 2004, 69, 2206-2209.Google Scholar
  38. 38.
    A. F. Bochkov and G. E. Zaikov, Chemistry of the O-Glycosidic Bond, Translation Editor, C. Schuerch, Pergamon Press, Oxford, New York, 1979, p. 189.Google Scholar
  39. 39.
    Leonard Jurd, The Selective Alkylation of Polyphenols. II. Methylation of 7-, 4′-, and 3′-Hydroxy Groups in Flavonols, J. Org. Chem., 1962, 27, 1294-1297.Google Scholar
  40. 40.
    David J. Maloney and Sidney M. Hecht, Synthesis of a Potent and Selective Inhibitor of p90 RsK, Org. Lett., 2005, 7, 1097-1099.Google Scholar
  41. 41.
    Kei Shimoda, Takanao Otsuka, Yoko Morimoto, Hatsuyuki Hamada, and Hiroki Hamada, Glycosylation and Malonylation of Quercetin, Epicatechin and Catechin by Cultured Plant Cells, Chem. Lett. (Japan), 2007, 36, 1292-1293.Google Scholar
  42. 42.
    Kin-ichi Oyama and Tadao Kondo, Total Synthesis of Flavocommelin, a Component of the Blue Supramolecular Pigment from Commelina communis, on the Basis of Direct 6-C-Glyosylation of Flavan, J. Org. Chem., 2004, 69, 5240-5246.Google Scholar
  43. 43.
    Christopher J. Hayes, Benjamin P. Whittaker, Susan A. Watson and Anna M. Grabowska, Synthesis and Preliminary Anticancer Activity Studies of C4 and C8-Modified Derivatives of Catechin Gallate (CG) and Epicatechin Gallate (ECG), J. Org. Chem., 2006, 71, 9701-9712.Google Scholar
  44. 44.
    Alan P. Kozikowski, Werner Tuckmantel, Gasine Bottcher, and Leo J. Romanczyk, Jr., Studies in Polyphenol Chemistry and Bioactivity. 4. Synthesis of Trimeric, Tetrameric, Pentameric and Higher Oligomeric Epicatechin-Derived Procyanidins Having All-4β-8-Interflavan Connectivity and Their Inhibition of Cancer Cell Growth through Cell Cycle Arrest, J. Org. Chem., 2003, 68, 1641-1658.Google Scholar
  45. 45.
    Daniel B. Dess and J. C. Martin, A. Useful 12-I-5 Triacetoxyperiodinane (the Dess Martin Periodinane) for the Selective Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species, J. Am. Chem. Soc., 1991, 113, 7277-7287.Google Scholar
  46. 46.
    Stephanie D. Meyer and Stuart L. Schreiber, Acceleration of the Dess-Martin Oxidation by Water, J. Org. Chem., 1994, 59, 7549-7552.Google Scholar
  47. 47.
    Mary Fieser and Louis F. Fieser, Reagents for Organic Synthesis, John Wiley & Sons, New York, Vol. 4, 1974, p. 312-313; Vol 6, 1977, p. 348.Google Scholar

Further Reading

  1. T. J. Mabry, K. R. Markham, and M. B. Thomas, The Systematic Identification of Flavonoids, Springer-Verlag, New York, Heidelberg, Berlin, 1970.CrossRefGoogle Scholar
  2. The Flavonoids, edited by J. B. Harborne, T. J. Mabry, and Helga Mabry, Parts I and II, Academic Press, New York, 1975. Google Scholar
  3. The Flavonoids, edited by J. B. Harborne and H. Mabry, Chapman and Hall, New York, London, 1988. Google Scholar
  4. B. A. Bohn, Introduction to Flavonoids, Harwood Academic Publishers, Amsterdam, 1999.Google Scholar
  5. Gerard M. Boland and Dervilla M. X. Donnelly, Flavonoids and Related Compounds, Nat. Prod. Rep., 1998, 241-260Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sunil Kumar Talapatra
    • 1
  • Bani Talapatra
    • 1
  1. 1.Dept. ChemistryUniversity of CalcuttaKolkataIndia

Personalised recommendations