Skip to main content

Shikimic Acid Pathway

  • Chapter
  • First Online:
Chemistry of Plant Natural Products

Abstract

Of the identified biosynthetic paths, shikimic acid pathway plays a very important role in providing precursors of a large number of aromatic compounds of diverse skeletal patterns and substitutions. Chorismic acid, an important branching point product in the shikimic acid pathway also serves as an important precursor. Natural products with C 6 –C 1 or C 6 –C 3 or C 6 –C 3 –C 3 –C 6 unit as their complete skeletal carbon content or partial skeletal carbon content like C 3 –C 6 of C6C 3 –C 6 system utilize these precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas S. Johnson and Jie Jack Li, Neuraminidase Inhibitors for Influenza: Synthesis of Oseltamivir Phosphate (Tamiflu) and Zanamivir (Relenza) in The Art of the Drug Synthesis, Eds. Douglas S. Johnson & Jie Jack Li, Wiley-Interscience, 2007, pp. 99-110, and relevant references cited.

    Google Scholar 

  2. Javier Magano, Synthetic Approaches to the Neuraminidase Inhibitors Zanamivir (Relenza) and Oseltamivir Phosphate (Tamiflu) for the Treatment of Influenza, Chem. Rev., 2009, 109, 4396-4438.

    Article  Google Scholar 

  3. Sadagopalan Raghavan and Vaddela Sudheer Babu, Enantioselective Synthesis of Oseltamivir Phosphate, Tetrahedron, 2011, 67, 2044-2050.

    Google Scholar 

  4. John Leo Abernethy, The Historical and Current Interest in Coumarin, J. Chem. Educ., 1969, 46, 561-568.

    Google Scholar 

  5. R. D. H. Murray, Naturally Occurring Coumarins, Fortschr. Chem. org. Naturstoffe., 1978, 35, 199-429

    Google Scholar 

  6. R. D. H. Murray, Naturally Occurring Coumarins, Fortschr. Chem. org. Naturstoffe., 1991, 58, 83-316

    CAS  Google Scholar 

  7. R. D. H. Murray, Naturally Occurring Coumarins, Fortschr. Chem. org. Naturstoffe., 1997, 72, 2-119

    Google Scholar 

  8. R. D. H. Murray, Naturally Occurring Coumarins, Fortschr. Chem. org. Naturstoffe., 2002, 83, 1-619; F. M. Dean, ibid, 1952, 9, 225-291.

    Google Scholar 

  9. R. D. H. Murray, J. Mendez and S. A. Brown, The Natural Coumarins : Occurrence, Chemistry and Biochemistry, Wiley, New York, 1982.

    Google Scholar 

  10. David L. Dreyer, Some Structural and Stereochemical Aspects of Coumarin Biosynthesis in The Shikimic Acid Pathway, ed. Eric E. Conn, Plenum Publishing Corporation, 1989, pp. 317-337.

    Google Scholar 

  11. Volker Stanjek, Jörn Piel and Wilhelm Boland, Biosynthesis of Furanocoumarins: Mevalonic-independent Prenylation of Umbelliferone in Apium graveolens (Apiaceae), Phytochemistry, 1999, 50, 1141-1145.

    Article  CAS  Google Scholar 

  12. H. Pozzl, Studies on Argentina plants – XXII, Helietin, a New Furanocoumarin from Helietta longifolia Britt, Tetrahedron, 1967, 23, 1129-1134.

    Article  Google Scholar 

  13. Helmut Duddeck and Manfred Kaiser, 13C NMR Spectroscopy of Coumarin Derivatives, Organic Magnetic Resonance, 1982, 20, 55-72.

    Article  CAS  Google Scholar 

  14. Warren Steck and M. Mazurek, Identification of Natural Coumarins by NMR Spectroscopy, Lloydia, 1972, 35, 418-439.

    Google Scholar 

  15. W. H. Perkin, On the Formation of Coumarin and Cinnamic Acid and of Other Analogous Acids from Aromatic Aldehydes, J. Chem. Soc., 1877, 31, 388-427 and references cited.

    Google Scholar 

  16. Osmo E. O. Hormi, Carita Peltonen and (in part) Rita Bergström (née Moisio), A One-Pot Synthesis of Coumarins from Dipotassium-O-Methoxybenzylidenemalonates, J. Chem. Soc. Perkin Tran I, 1991, 219-221.

    Google Scholar 

  17. H. von Pechmann and C. Duisberg, Ber.,. 1883, 16, 2119.

    Article  Google Scholar 

  18. Suresh Sethna and Ragini Padhke, The Pechmann Reaction in Organic Reactions, 1953, 7, 1.

    Google Scholar 

  19. Kurt D. Kaufman, Robert C. Kelly, and David C. Eaton, Synthetic Furocoumarins. VIII. The Pechmann Condensation of 2-Alkylhydroquinone, J. Org. Chem., 1967, 32, 504-506.

    Google Scholar 

  20. M. M. Potdar, S. S. Mohile and M. M. Salunkhe, Coumarin Synthesis via Pechmann Condensation in Lewis Acidic Chloroaluminate Ionic Liquid, Tetrahedron Lett., 2001, 42, 9285-9289.

    Article  CAS  Google Scholar 

  21. Yanlong Gu, Juan Zhang, Zhiying Duan, and Youquan Deng, Pechmann Reaction in Non-Chloroaluminate Acidic Ionic Liquids under Solvent-Free Conditions, Adv. Synth. Catal., 2005, 347, 512-516.

    Google Scholar 

  22. P. R. Singh, D. U. Singh and S. D. Samant, Sulphamic Acid – An Efficient and Cost-effective Solid Acid Catalyst for The Pechmann Reaction, Synlett, 2004, 1909-1912.

    Google Scholar 

  23. Surya K. De and Richard A. Gibbs, An Efficient and Practical Procedure for the Synthesis of 4-Substituted Coumarins, Synthesis, 2005, 1231-1233.

    Google Scholar 

  24. Kochi Tanaka, Solvent-Free Organic Synthesis, Wiley-VCH, 2002, p. 58.

    Google Scholar 

  25. Juan C. Rodriguez-Dominguez and Gilbert Kirsch, Zirconyl Chloride: A Useful Catalyst in The Pechmann Coumarin Synthesis, Synthesis, 2006, 1895-1897.

    Google Scholar 

  26. S. Frére, V. Thiéry and T. Besson, Microwave Acceleration of the Pechmann Reaction on Graphite/Montmorillonite K10: Application to The Preparation of 4-Substituted 7-Aminocoumarins, Tetrahedron Lett., 2001, 42, 2791-2794.

    Article  Google Scholar 

  27. George Bratulescu and A. Quick, An Advantageous Synthesis of 2H-1-Benzopyran-2-ones Unsubstituted on the Pyronic Nucleus, Synthesis, 2008, 2871-2873.

    Google Scholar 

  28. Barry M. Trost and F. Dean Toste, A New Palladium Catalyzed Addition. A Mild Method for the Synthesis of Coumarins, J. Am. Chem. Soc., 1996, 118, 6305-6306.

    Google Scholar 

  29. Antonio de la Hoz, Andrés Moreno, and Ester Vaźquez, Use of Microwave Irradiation and Solid Acid Catalysts in An Enhanced and Environmentally Friendly Synthesis of Coumarin Derivatives, Synlett, 1999, 608-

    Google Scholar 

  30. Kang Hyun Park, II Gu Jung and Young Keun Chung, Synthesis of Coumarins Catalyzed by Heterobimetallic Co/Rh Nanoparticles, Synlett, 2004, 2541-2544.

    Google Scholar 

  31. J. A. Panetta and H. Rapoport, New Syntheses of Coumarins, J. Org. Chem., 1982, 47, 946-950.

    Article  CAS  Google Scholar 

  32. Kazuo Nagasawa and Keiichi Ito, A Cerium Metal-Mediated Coumarin Synthesis, Heterocycles, 1989, 28, 703-706.

    Article  CAS  Google Scholar 

  33. George A. Kraus and John O. Pezzanite, Michael Addition in Anhydrous Media. Novel Synthesis of Oxygenated Coumarins, J. Org. Chem., 1979, 44, 2480-

    Google Scholar 

  34. T. Mizuno, I. Nishiguchi, T. Hirashima, A. Ogawa, N, Kambe, and N. Sonoda, Facile Synthesis of 4-Hydroxycoumarins by Sulfur-Assisted Carbonylation of 2′-Hydroxyacetophenones and Carbon Monoxide, Synthesis, 1988, 257-259.

    Google Scholar 

  35. A. Ogawa, N. Kombe, S. Murai and N. Sonoda, Selenium-Assisted Carbonylation of Alkyl Aryl Ketones with Carbon Monoxide, Tetrahedron, 1985, 41, 4813-4819.

    Article  CAS  Google Scholar 

  36. Volodymyr Semeniuchenko, Ulrich Groth and Volodymyr Khilya, Synthesis of Chroman-2-ones by Reduction of Coumarins, Synthesis, 2009, 3533-3556.

    Google Scholar 

  37. Z. Shi and C. He, Direct Functionalization of Arenes by Primary Alcohol Sulphonate Esters Catalyzed by Gold (III), J. Am. Chem. Soc., 2004, 126, 13596-13597.

    Article  CAS  Google Scholar 

  38. B. S. Kirkiacharian and A. Danan, Reductions via Borane: A New Convenient Method for the Preparation of 3-Substituted Esters and Thioesters of 3,4-Dihydrocoumarin, Synthesis, 1986, 383-385.

    Google Scholar 

  39. Zhengang Liu, Qian Liu, Wei Zhang, Ruizhu Mu, Li Yang, Zhong-Li-Liu and Wee Yu, Selective Reduction of the Endocyclic Double Bond of 3-Substituted Coumarins by Hantzch 1,4-Dihydropyridine, Synthesis, 2006, 0771-0774.

    Google Scholar 

  40. K. Li, L. N. Forsee and J. A. Tunge, Trifluoroacetic Acid-Mediated Hydroxylation. Synthesis of Dihydrocoumarins and Dihydroquinolines, J. Org. Chem., 2005, 76, 2881-2883.

    Article  Google Scholar 

  41. W. Steck, New Synthesis of Demethylsuberosin, Xanthyletin, (±)-Decursinol, (+)-Marmesin, (–)-Nodakenetin, (±)-Decursin and (±)-Prantschimgin, Cand. J. Chem., 1971, 49, 2297-2301.

    Google Scholar 

  42. Bani Talapatra, Sudipta Kumar Mandal, Kallolmay Biswas, Ramaprasad Chakrabarti and Sunil K. Talapatra, Rections of 4-Hydroxycoumarins with Some α,β-Unsaturated Carbonyls and 1,3-Dicarbonyls: Trapping of 4-Hydroxycoumarin Tautomers; Formation of a Pimelic Acid Derivative and a Novel Bicyclo Compound. J. Indian Chem. Soc. (Platinum Jubilee Commemoration Issue II), 2001, 78, 765-771.

    Google Scholar 

  43. George S. Hammond, Charles A Stout and Angelo A. Lamola, Mechanism of Photochemical Rections in Solution XXV. The Photodimerization of Coumarin, J. Am. Chem. Soc., 1964, 86, 3103-3106.

    Article  CAS  Google Scholar 

  44. Kayambu Mathuramu and Vaidhyanathan Rama Murthy, Photodimerization of Coumarin in Aqueous and Micellar Media, J. Org. Chem., 1982, 47, 3976-3979.

    Google Scholar 

  45. Koichi Tanaka and Takashi Fujiwara, Enantioselective [2 + 2]Photodimerization Reactions of Coumarins in Solution, Org. Letters, 2005, 7, 1501-1503, and references cited.

    Google Scholar 

  46. M. D. Cohen, G. M. J. Schmidt and F. I. Sonntag, Topochemistry Part II. The Photochemistry of trans-cinnamic Acids, J. Chem. Soc., 1964, 2000-2013.

    Google Scholar 

  47. N. Ramasubbu, T. N. Guru Row, K. Venkatesan, Y. Ramamurthy and C. N. R. Rao, Photodimerization of Coumarins in The Solid State, J. Chem. Soc., Chem. Commun., 1982, 178-179.

    Google Scholar 

  48. K. Gnanaguru, N. Ramasubbu, K. Venkatesan and V. Ramamurthy, A. Study on the Photochemical Dimerization of Coumarins in the Solid State, J. Org. Chem., 1985, 50, 2337-2346.

    Google Scholar 

  49. Narasimha Moorthy and K. Venkatesen, Stereospecific Photodimerization of Coumarins in Crystalline Inclusion Complexes. Molecular and Crystal Structure of 1:2 Complex of (S,S)-(–)-1,6-Bis(o-chlorophenyl)-1,6-diphenylhexa-2,4-diyne-1,6-diol and Coumarin, J. Org. Chem., 1991, 57, 6957-6960.

    Google Scholar 

  50. J. W. Hanifin and E. Cohen, Some Photochemical Rections of Coumarin, Tetrahedron Lett., 1966, 1419-1424.

    Google Scholar 

  51. Marko Soltau, Maren Göwert and Paul Margaretha, Light-Induced Coumarin Cyclopentannelation, Organic Letters, 2005, 7, 5159-5161.

    Article  CAS  Google Scholar 

  52. Yongqiang Wen, Yanlin Song, Dongbo Zhao, Kuiling Ding, Jiang Bian, Xue Zhang, Jingxia Wang, Yang Liu, Lei Jiang and Daoben Zhu, Highly Regio- and Enantioselective Thermal [2+2]Cycloaddition of Coumarin in a Crystalline Inclusion Complex Under High Vacuum, Chem. Commun., 2005, 2732-2734.

    Google Scholar 

  53. R. N. Gourley, J. Grimshaw, and P. G. Millar, Electrochemical Reactions. Part VIII. Asymmetric Induction During the Reduction of Coumarins Modified by the Presence of Tertiary Amines, J. Chem. Soc., Sec. C, 1970, 2318-2323.

    Google Scholar 

  54. Gang Chen, Nirihito Tokunaga and Tamio Hayashi, Rhodium-Catalyzed Asymmetric 1,4-Addition of Arylboronic Acids to Coumarins: Asymmetric Synthesis of (R)-Tolterodine, Org. Lett., 2005, 7, 2285-2288.

    Article  CAS  Google Scholar 

  55. Irina P. Beletskaya, Olga G. Ganina, Alexey V. Tsvetkov, Alexey Yu Fedorov, and Jean-Pierre Finet, Synthesis of 4-Heteroaryl-Substituted Coumarins by Suzuki Cross-Coupling Reactions, Synlett, 2004, 2797-2799.

    Google Scholar 

  56. Olga G. Ganina, Alexey Yu Fedorov and Irina P. Beletskaya, Palladium-Catalyzed Reactions of 4-(Trifluoromethylsulfonyloxy)coumarins with Amides and NH-Heterocycles, Synthesis, 2009, 3689-3693.

    Google Scholar 

  57. Wei Wang and Hao Li, An Efficient Synthesis of the Intrinsic Fluorescent Peptide Labels, (S)- and (R)-(6,7-Dimethoxy-4-coumaryl)alanines via Asymmetric Hydrogenation, Tetrahedron Lett., 2004, 45, 8479-8481.

    Google Scholar 

  58. Nis Halland, Tore Hansen and Karl Anker Jørgensen, Organocatalytic Asymmetric Michael Reaction of Cyclic 1,3-Dicarbonyl Compounds and α,β-Unsaturated Ketones – A Highly Atom-Economic Catalytic One-Step Formation of Optically Active Warfarin Anticoagulant, Angew. Chem. Int. Ed., 2003, 42, 4955-4957.

    Google Scholar 

  59. Shoji Akita, Naoki Umezawa and Tsunehiko Higuchi, On-Bead Fluorescence Assay for Serine/Threonine Kinases, Org. Lett., 2005, 7, 5565-5568.

    Article  CAS  Google Scholar 

  60. Sarah Forley, Patricia Rotureau, Serge Pin, Gérard Baldacchino, Jean-Philippe Renault and Jean-Claude Mialocq, Radiolysis of Confined Water. Production and Reactivity of Hydroxyl Radicals, Angew. Chem. Int. Ed., 2005, 44, 110-112.

    Article  Google Scholar 

  61. Asima Chatterjee and Sudhangsu Sekhar Mitra, On the Constitution of the Active Principles Isolated from Matured Bark of Aegle marmelos Correâ, J. Am. Chem. Soc., 1949, 71, 606–609.

    Google Scholar 

  62. Ichiro Harada, Toshiki Hirose and Masao Nakazaki, The Absolute Configuration of (+)-Marmesin and (−)-Hydroxytremetone, Tetrahedron Lett., 1968, 5463–5466.

    Google Scholar 

  63. J. Arima, Über die Konstitution des Nodakenins, eines neuen Glujcosids von Peucedenum decursivum Maxim II; Bull. Chem. Soc. Japan, 1929, 4, 113.

    Article  CAS  Google Scholar 

  64. Helmut Duddeck and Manfred Kaiser, 13C NMR Spectroscopy of Coumarin Derivatives, Organic Magnetic Resonance, 1982, 20, 55–72, pertinent page 66, compound no. 182.

    Google Scholar 

  65. Warren Steck and M. Mazurek, Identification of Natural Coumarins by NMR Spectroscopy, Lloydia, 1972, 35, 418–439, pertinent page 430, compound number 52.

    Google Scholar 

  66. Volker Stanjek, Martin Miksch and Wilheim Boland, Stereoselective Syntheses of Deuterium Labelled Marmesins; Valuable Metabolic Probes for Mechanistic Studies in Furanocoumarin Biosynthesis, Tetrahedron, 1997, 53, 17699–17710.

    Article  CAS  Google Scholar 

  67. G. Bringmann, C. Günther, M. Ochse, O. Schupp and S. Tasler, Biaryls in Nature: A Multi-Facetted Class of Stereochemically, Biosynthetically and Pharmacologically Intriguing Secondary Metabolites, Fortschr. Chem. org. Naturstoffe., 2001, 82, 1–203, pertinent p.74-78 and relevant references cited.

    Google Scholar 

  68. Masahiko Taniguchi, Yong-Qing Xiano, Xiano-Hong Liu, Akiko Yabu, Yousuke Hada, Lian-Qing Guo, Yasushi Yamazoe,, and Kimiye Baba, Rivulobirin E and Rivulotriirin C from Pleurospermum rivulorum, Chem. Pharm. Bull., 1999, 47, 713–715.

    Article  CAS  Google Scholar 

  69. M. Dol, T. Nakamori, M. Shibano, T. Taniguchi, N.–H. Wang, and K. Baba, Candibrinin A, a Furanocoumarin Dimer Isolated from Heracleum candicans Wall, Acta. Crystallgr., Section C, Crystal Structure Coumarin.

    Google Scholar 

  70. David L. Dreyer, Some Structural and Stereochemical Aspects of Coumarin Biosynthesis in The Shikimic Acid Pathway, Ed. Eric. C. Conn, Plenum Publishing Corporation, 1989, pp. 317–337.

    Google Scholar 

Further Readings (of Section 13.1)

  • J. F. Eijkman, Sur les Principes Constituents de I’llicium religious (Sieb) (Shikimino-no-ki Japonaise) (On The Constituents of Illicium religious (Sieb) (Shikimino-no-ki en Japanese), Recl. Trav. Chim. Pays Bas 1885, 4, 32-54.

    Google Scholar 

  • R. Payn and M. Edmonds, Isolation of Shikimic Acid from Star Aniseed, J. Chem. Educ., 2005, 82, 599-

    Google Scholar 

  • Bruce Ganem, From Glucose to Aromatics : Recent Developments in Natural Products of the Shikimic Acid Pathway, Tetrahedron, 1974, 34(33), 3353-3383.

    Google Scholar 

  • P. M., Dewick, The Biosynthesis of Shikimate Metabolites, Natural Product Reports (NPR), 1998, 15, 17-58 and the references cited.

    Google Scholar 

  • T. A. Geissman and D. H. G. Crout, Organic Chemistry of Secondary Plant Metabolism, Freeman, Cooper & Company, San Francisco, California, 1969.

    Google Scholar 

  • Stephen Berger and Dieter Sicker, Classics in Spectroscopy (Isolation and Structure Elucidation of Natural Products), WILEY- VCH, 2009, Chapter 6.1, Shikimic Acid, pp 501-518.

    Google Scholar 

  • Bani Talapatra, Asoke K. Das, and Sunil K. Talapatra, Defuscin, A New Phenolic Ester from Dendrobium fuscescens: Conformation of Shikimic Acid, Phytochemistry, 1989, 28, 290-292.

    Google Scholar 

  • J. Schmid and N. Amrhein, Molecular Organization of the Shikimate Pathway in Higher Plants, Phytochemistry, 1995, 39, 737-749.

    Google Scholar 

  • Norman G. Lewis and Lawrence B Davin, Lignans : Biosynthesis and Functions in Comprehensive Natural Products Chemistry, Editors-in-Chief : Sir Derek Barton and Koji Nakanishi, Pergamon (Elsevier), 1999, Vol. 1, pp. 639-712.

    Google Scholar 

  • R. Bentley, The Shikimate Pathway – a Metabolic Tree with Many Branches, Biochem. Mol. Biol., 2001, 25, 307-384.

    Google Scholar 

  • P. M. Dewick, Medicinal Natural Products – A Biosynthetic Approach, 3rd Edition, John Wiley & Sons, 2009, Chapter 4, pp. 137-186.

    Google Scholar 

  • K.C. Nicolaou and T. Montagnon, Molecules That Changed The World, Wiley-VCH, Weinheim, 2008, Chapter 33, Small Molecule Drugs, pp 295-318.

    Google Scholar 

  • Andrew R. Knaggs, The Biosynthesis of Shikimic Metabolites, Natural Product Reports (NPR), 2001, 18, 334-355.

    Google Scholar 

  • Chao-Jun Li, Organic Reactions in Aqueous Media – With a Focus on Carbon-Carbon Bond Formation, Chem. Rev. 1993, 93, 2023-2035. Pertinent reference: S. D. Coplay and J. J. Knowles, J. Am. Chem. Soc., 1987, 109, 5008.

    Google Scholar 

  • M. Kramer, J. Bongaerts, R. Bovenberg, S. Kremer, U. Muller, S. Orf, M. Wubbolts and L. Raeven, Metabolic Engineering for Microbial production of Shikimic acid, Metabolic Engineering, 2003, 5, 277-283.

    Google Scholar 

  • E. Halsam, Aspects of the Enzymology of Shikimate Pathway, Fortschr. Chem. Org. Naturstoffe, 1996, 69, 157-240.

    Google Scholar 

  • Barry M. Trost and Ting Zhang, A Concise Synthesis of (–)-Oseltamivir, Angew. Chem. Int. Ed. 2008, 47, 3759-3761, and references cited therein on other syntheses of tamiflu in 2006 and 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Talapatra, S.K., Talapatra, B. (2015). Shikimic Acid Pathway. In: Chemistry of Plant Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45410-3_13

Download citation

Publish with us

Policies and ethics