Cooperating Objects in Healthcare Applications

  • Stamatis KarnouskosEmail author
  • Pedro José Marrón
  • Giancarlo Fortino
  • Luca Mottola
  • José Ramiro Martínez-de Dios
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Wireless sensor/actuators networks (WSN) have emerged in the recent years as one of the enabling technologies for healthcare applications [1, 2, 3] both as body sensor networks (BSNs) and as environmental assistant networks.


Sensor Node Heart Rate Variability Model Predictive Control Fall Detection Body Sensor Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ko J, Lim JH, Chen Y, Musvaloiu-E R, Terzis A, Masson GM, Gao T, Destler W, Selavo L, Dutton RP (2010) Medisn: medical emergency detection in sensor networks. ACM Trans Embed Comput Syst 10(1):11:1–11:29. doi:  10.1145/1814539.1814550
  2. 2.
    Virone G, Wood A, Selavo L, Cao Q, Fang L, Doan T, He Z, Stoleru R, Lin S, Stankovic JA (2006) An advanced wireless sensor network for health monitoring. In: Transdisciplinary conference on distributed diagnosis and home healthcare (D2H2), pp 2–5.
  3. 3.
    Malan DJ, Welsh M, Smith MD (2008) Implementing public-key infrastructure for sensor networks. ACM Trans Sens Netw 4(4):1–23. doi:  10.1145/1387663.1387668 Google Scholar
  4. 4.
    Malan D, Fulford-Jones T, Welsh M, Moulton S (2004) Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: MobiSys 2004 workshop on applications of mobile embedded systems (WAMES 2004)Google Scholar
  5. 5.
    Zhang M, Sawchuk A (2009) A customizable framework of body area sensor network for rehabilitation. In: Proceedings of the 2nd international symposium on applied sciences in biomedical and communication technologies, ISABEL 2009, IEEE Press, pp 24–27Google Scholar
  6. 6.
    SunSPOT-website (2012)
  7. 7.
    Gravina R, Guerrieri A, Fortino G, Bellifemine F, Giannantonio R, Sgroi M (2008) Development of body sensor network applications using SPINE. In: Conference proceedings—IEEE international conference on systems, man and cybernetics, pp 2810–2815Google Scholar
  8. 8.
    Bellifemine F, Fortino G, Giannantonio R, Gravina R, Guerrieri A, Sgroi M (2011) SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Softw Pract Experience 41(3):237–265Google Scholar
  9. 9.
    Gravina R, Alessandro A, Salmeri A, Buondonno L, Raveendranafhan N, Loseu V, Giannantonio R, Seto E, Fortino G (2010) Enabling multiple BSN applications using the spine framework. In: Proceedings of the 2010 international conference on body sensor, networks, pp 228–233Google Scholar
  10. 10.
    Buondonno L, Fortino G, Galzarano S, Giannantonio R, Giordano A, Gravina R, Guerrieri A (2009) Programming signal processing applications on heterogeneous wireless sensor platforms. In: Proceedings of the 5th IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, IDAACS’2009, pp 682–687Google Scholar
  11. 11.
    SPINE-website (2012)
  12. 12.
    Lombriser C, Roggen D, Stiger M, Trister G (2007) Titan: a tiny task network for dynamically reconfigurable heterogeneous sensor networks. In: 15 Fachtagung Kommunikation in Verteilten Systemen (KiVS) 15(127–138)Google Scholar
  13. 13.
    Aiello F, Fortino G, Gravina R, Guerrieri A (2011) A Java-based agent platform for programming wireless sensor networks. Comput J 54(3):439–454CrossRefGoogle Scholar
  14. 14.
    Maurer U, Smailagic A, Siewiorek DP, Deisher M (2006) Activity recognition and monitoring using multiple sensors on different body positions. In: Proceedings of the international workshop on wearable and implantable body sensor networks, IEEE Computer Society, BSN 2006, pp 113–116Google Scholar
  15. 15.
    Dinh A, Teng D, Chen L, Shi Y, McCrosky C, Basran J, Del Bello-Hass V (2009) Implementation of a physical activity monitoring system for the elderly people with built-in vital sign and fall detection. In: 6th international conference on information technology: new generations, 2009, series ITNG ’09, pp 1226–1231Google Scholar
  16. 16.
    Dinh A, Teng D, Chen L, Ko SB, Shi Y, McCrosky C, Basran J, Del Bello-Hass V (2009) A wearable device for physical activity monitoring with built-in heart rate variability. In: 3rd international conference on bioinformatics and biomedical engineering, 2009, ICBBE 2009, pp 1–4Google Scholar
  17. 17.
    Zappi P, Lombriser C, Stiefmeier T, Farella E, Roggen D, Benini L, Tröster G (2008) Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: Proceedings of the 5th European conference on wireless sensor networks, EWSN’08. Springer, Berlin, pp 17–33Google Scholar
  18. 18.
    Zhu C, Sheng W (2011) Wearable sensor-based hand gesture and daily activity recognition for robot-assisted living. IEEE Trans Syst Man Cybern Part A Syst Hum 41(3):569–573CrossRefGoogle Scholar
  19. 19.
    Carnì D, Fortino G, Gravina R, Grimaldi D, Guerrieri A, Lamonaca F (2011) Continuous, real-time monitoring of assisted livings through wireless body sensor networks. In: Proceedings of the 6th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications, IDAACS’2011, vol 2, pp 872–877Google Scholar
  20. 20.
    Raveendranathan N, Galzarano S, Loseu V, Gravina R, Giannantonio R, Sgroi M, Jafari R, Fortino G (2012) From modeling to implementation of virtual sensors in body sensor networks. IEEE Sens J 12(3):583–593CrossRefGoogle Scholar
  21. 21.
    Panuccio P, Ghasemzadeh H, Fortino G, Jafari R (2011) Power-aware action recognition with optimal sensor selection: an adaboost driven distributed template matching approach. In: Proceedings of the 1st ACM workshop on mobile systems, applications, and services for healthCare—co-held with ACM SenSys 2011Google Scholar
  22. 22.
    Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27CrossRefzbMATHGoogle Scholar
  23. 23.
    Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125CrossRefGoogle Scholar
  24. 24.
    Food, Nutrition Board NAoS (2002) Dietary reference intakes for energy, carbohydrates, fiber, fat, protein and amino acids. National Academy Press, WashingtonGoogle Scholar
  25. 25.
    U.S. Department of Health & Human Services UD, for Disease Control & Prevention C, for Chronic Disease Prevention & Health Promotion TNC (1996) Physical activity and health: a report of the surgeon generalGoogle Scholar
  26. 26.
    Chen K, Sun M (1997) Improving energy expenditure estimation by using a triaxial accelerometer. J Appl Physiol 83(6):2112–2122Google Scholar
  27. 27.
    Mizell D (2003) Using gravity to estimate accelerometer orientation. In: Proceedings of the 7th IEEE international symposium on wearable computers, IEEE Computer Society, ISWC’03, pp 252–253Google Scholar
  28. 28.
    Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) SPINE-HRV: a BSN-based toolkit for heart rate variability analysis in the time-domain. Lecture notes in, electrical engineering, LNEE, vol 75, pp 369–389Google Scholar
  29. 29.
    Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) Time-domain heart rate variability analysis with the spine-HRV toolkit. In: Proceedings of the 3rd international conference on pervasive technologies related to assistive environmentsGoogle Scholar
  30. 30.
    McEwen B (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179CrossRefGoogle Scholar
  31. 31.
    Segerstrom SC, Miller GE (2004) Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130(4):601–630CrossRefGoogle Scholar
  32. 32.
    Yang HK, Lee JW, Lee KH, Lee YJ, Kim KS, Choi HJ, Kim DJ (2008) Application for the wearable heart activity monitoring system: analysis of the autonomic function of HRV. In: Proceedings of the 30th annual international conference on engineering in medicine and biology society, EMBS 2008, IEEE Press, pp 1258–1261Google Scholar
  33. 33.
    Raya C, Torrent M, Parera J, Angulo C, Catala A (2007) KneeMeasurer: a wearable interface for joint angle measurements. In: International congress on domotics, robotics and remote-assistance for allGoogle Scholar
  34. 34.
    Bo APL, Hayashibe M, Poignet P (2011) Joint angle estimation in rehabilitation with inertial sensors and its integration with kinect. In: Annual international conference of the IEEE engineering in medicine and biology societyGoogle Scholar
  35. 35.
    Cooper G, Sheret I, McMillian L, Siliverdis K, Sha N, Hodgins D, Kenney L, Howard D (2009) Inertial sensor-based knee flexion/extension angle estimation. J Biomech 42(16):2678–2685CrossRefGoogle Scholar
  36. 36.
    Benocci M, Tacconi C, Farella E, Benini L, Chiari L, Vanzago L (2010) Accelerometer-based fall detection using optimized ZigBee data streaming. Microelectron J 41(11):703–710. doi: 10.1016/j.mejo.2010.06.014, IEEE international workshop on advances in sensors and interfaces 2009Google Scholar
  37. 37.
    Chen J, Kwong K, Chang D, Luk J, Bajcsy R (2005) Wearable sensors for reliable fall detection. In: 27th annual international conference of the IEEE engineering in medicine and biology society 2005, IEEE-EMBS 2005, pp 3551–3554. doi:  10.1109/IEMBS.2005.1617246
  38. 38.
    Kangas M, Konttila A, Lindgren P, Winblad I, Jamsa T (2008) Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291. doi:  10.1016/j.gaitpost.2008.01.003 Google Scholar
  39. 39.
    Caione C, Brunelli D, Benini L (2012) Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans Industr Inf 8(1):30–40. doi: 10.1109/TII.2011.2173500 Google Scholar
  40. 40.
    Caione C, Brunelli D, Benini L (2010) Compressive sensing optimization over zigbee networks. In: 2010 international symposium on industrial embedded systems (SIES), pp 36–44. doi: 10.1109/SIES.2010.5551380
  41. 41.
    Chiasserini C (2002) On the concept of distributed digital signal processing in wireless sensor networks. In: Proceedings of MILCOM 2002, vol 1, pp 260–264. doi: 10.1109/MILCOM.2002.1180450
  42. 42.
    Nikolaou M (2001) Model predictive controllers: a critical synthesis of theory and industrial needs. Advances in chemical engineering (Elsevier) 26:131–204. doi:  10.1016/S0065-2377(01)26003-7
  43. 43.
    Moser C, Thiele L, Brunelli D, Benini L (2010) Adaptive power management for environmentally powered systems. IEEE Trans Comput 59(4):478–491. doi:  10.1109/TC.2009.158 Google Scholar
  44. 44.
    Dondi D, Bertacchini A, Larcher L, Pavan P, Brunelli D, Benini L (2008) A solar energy harvesting circuit for low power applications. In: Sustainable energy technologies, 2008. ICSET 2008. IEEE international conference on, pp 945–949. doi:  10.1109/ICSET.2008.4747143
  45. 45.
    Carli D, Brunelli D, Bertozzi D, Benini L (2010) A high-efficiency wind-flow energy harvester using micro turbine. In: Power electronics electrical drives automation and motion (SPEEDAM), 2010 international symposium on, pp 778–783. doi:  10.1109/SPEEDAM.2010.5542121
  46. 46.
    Brunelli D, Dondi D, Bertacchini A, Larcher L, Pavan P, Benini L (2008) Photovoltaic scavenging systems: modeling and optimization. Microelectron J 40(9):1337–1344. doi:  10.1016/j.mejo.2008.08.013 Google Scholar
  47. 47.
    Porcarelli D, Brunelli D, Magno M, Benini L (2012) A multi-harvester architecture with hybrid storage devices and smart capabilities for low power systems. In: Power electronics, electrical drives, automation and motion (SPEEDAM), 2012 international symposium on, pp 946–951. doi:  10.1109/SPEEDAM.2012.6264533
  48. 48.
    Fortino G, Guerrieri A, Bellifemine F, Giannantonio R (2009) Platform-independent development of collaborative wireless body sensor network applications: Spine2. In: Proceedings of the 2009 IEEE international conference on systems, man and cybernetics, pp 3144–3150Google Scholar
  49. 49.
    Fortino G, Guerrieri A, Bellifemine F, Giannantonio R (2009) Spine2: developing bsn applications on heterogeneous sensor nodes. In: Proceedings of the IEEE international symposium on industrial embedded systems, pp 128–131Google Scholar
  50. 50.
    Fortino G, Pathan M, Di Fatta G (2012) BodyCloud: integration of cloud computing and body sensor networks. In: Proceedings of the 4th IEEE international conference on cloud computing technology and scienceGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Stamatis Karnouskos
    • 1
    Email author
  • Pedro José Marrón
    • 2
  • Giancarlo Fortino
    • 3
  • Luca Mottola
    • 4
  • José Ramiro Martínez-de Dios
    • 5
  1. 1.SAPKarlsruheGermany
  2. 2.Netzworked Embedded Systems GroupUniversity of Duisburg-EssenDuisburgGermany
  3. 3.University of CalabriaCalabriaItaly
  4. 4.Dipartimento di Elettronica ed InformazionePolitecnico di MilanoMilanoItaly
  5. 5.University of SevilleSevilleSpain

Personalised recommendations