Skip to main content

Cooperating Objects in Healthcare Applications

  • Chapter
  • First Online:
Book cover Applications and Markets for Cooperating Objects

Abstract

Wireless sensor/actuators networks (WSN) have emerged in the recent years as one of the enabling technologies for healthcare applications [13] both as body sensor networks (BSNs) and as environmental assistant networks.

Contributors of this chapter include: Davide Brunelli, Elisabetta Farella, Giancarlo Fortino, Roberta Giannantonio, and Raffaele Gravina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko J, Lim JH, Chen Y, Musvaloiu-E R, Terzis A, Masson GM, Gao T, Destler W, Selavo L, Dutton RP (2010) Medisn: medical emergency detection in sensor networks. ACM Trans Embed Comput Syst 10(1):11:1–11:29. doi: 10.1145/1814539.1814550

  2. Virone G, Wood A, Selavo L, Cao Q, Fang L, Doan T, He Z, Stoleru R, Lin S, Stankovic JA (2006) An advanced wireless sensor network for health monitoring. In: Transdisciplinary conference on distributed diagnosis and home healthcare (D2H2), pp 2–5. http://www.cs.virginia.edu/papers/d2h206-health.pdf

  3. Malan DJ, Welsh M, Smith MD (2008) Implementing public-key infrastructure for sensor networks. ACM Trans Sens Netw 4(4):1–23. doi: 10.1145/1387663.1387668

    Google Scholar 

  4. Malan D, Fulford-Jones T, Welsh M, Moulton S (2004) Codeblue: an ad hoc sensor network infrastructure for emergency medical care. In: MobiSys 2004 workshop on applications of mobile embedded systems (WAMES 2004)

    Google Scholar 

  5. Zhang M, Sawchuk A (2009) A customizable framework of body area sensor network for rehabilitation. In: Proceedings of the 2nd international symposium on applied sciences in biomedical and communication technologies, ISABEL 2009, IEEE Press, pp 24–27

    Google Scholar 

  6. SunSPOT-website (2012) http://www.sunspotworld.com

  7. Gravina R, Guerrieri A, Fortino G, Bellifemine F, Giannantonio R, Sgroi M (2008) Development of body sensor network applications using SPINE. In: Conference proceedings—IEEE international conference on systems, man and cybernetics, pp 2810–2815

    Google Scholar 

  8. Bellifemine F, Fortino G, Giannantonio R, Gravina R, Guerrieri A, Sgroi M (2011) SPINE: a domain-specific framework for rapid prototyping of WBSN applications. Softw Pract Experience 41(3):237–265

    Google Scholar 

  9. Gravina R, Alessandro A, Salmeri A, Buondonno L, Raveendranafhan N, Loseu V, Giannantonio R, Seto E, Fortino G (2010) Enabling multiple BSN applications using the spine framework. In: Proceedings of the 2010 international conference on body sensor, networks, pp 228–233

    Google Scholar 

  10. Buondonno L, Fortino G, Galzarano S, Giannantonio R, Giordano A, Gravina R, Guerrieri A (2009) Programming signal processing applications on heterogeneous wireless sensor platforms. In: Proceedings of the 5th IEEE international workshop on intelligent data acquisition and advanced computing systems: technology and applications, IDAACS’2009, pp 682–687

    Google Scholar 

  11. SPINE-website (2012) http://spine.deis.unical.it

  12. Lombriser C, Roggen D, Stiger M, Trister G (2007) Titan: a tiny task network for dynamically reconfigurable heterogeneous sensor networks. In: 15 Fachtagung Kommunikation in Verteilten Systemen (KiVS) 15(127–138)

    Google Scholar 

  13. Aiello F, Fortino G, Gravina R, Guerrieri A (2011) A Java-based agent platform for programming wireless sensor networks. Comput J 54(3):439–454

    Article  Google Scholar 

  14. Maurer U, Smailagic A, Siewiorek DP, Deisher M (2006) Activity recognition and monitoring using multiple sensors on different body positions. In: Proceedings of the international workshop on wearable and implantable body sensor networks, IEEE Computer Society, BSN 2006, pp 113–116

    Google Scholar 

  15. Dinh A, Teng D, Chen L, Shi Y, McCrosky C, Basran J, Del Bello-Hass V (2009) Implementation of a physical activity monitoring system for the elderly people with built-in vital sign and fall detection. In: 6th international conference on information technology: new generations, 2009, series ITNG ’09, pp 1226–1231

    Google Scholar 

  16. Dinh A, Teng D, Chen L, Ko SB, Shi Y, McCrosky C, Basran J, Del Bello-Hass V (2009) A wearable device for physical activity monitoring with built-in heart rate variability. In: 3rd international conference on bioinformatics and biomedical engineering, 2009, ICBBE 2009, pp 1–4

    Google Scholar 

  17. Zappi P, Lombriser C, Stiefmeier T, Farella E, Roggen D, Benini L, Tröster G (2008) Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: Proceedings of the 5th European conference on wireless sensor networks, EWSN’08. Springer, Berlin, pp 17–33

    Google Scholar 

  18. Zhu C, Sheng W (2011) Wearable sensor-based hand gesture and daily activity recognition for robot-assisted living. IEEE Trans Syst Man Cybern Part A Syst Hum 41(3):569–573

    Article  Google Scholar 

  19. Carnì D, Fortino G, Gravina R, Grimaldi D, Guerrieri A, Lamonaca F (2011) Continuous, real-time monitoring of assisted livings through wireless body sensor networks. In: Proceedings of the 6th IEEE international conference on intelligent data acquisition and advanced computing systems: technology and applications, IDAACS’2011, vol 2, pp 872–877

    Google Scholar 

  20. Raveendranathan N, Galzarano S, Loseu V, Gravina R, Giannantonio R, Sgroi M, Jafari R, Fortino G (2012) From modeling to implementation of virtual sensors in body sensor networks. IEEE Sens J 12(3):583–593

    Article  Google Scholar 

  21. Panuccio P, Ghasemzadeh H, Fortino G, Jafari R (2011) Power-aware action recognition with optimal sensor selection: an adaboost driven distributed template matching approach. In: Proceedings of the 1st ACM workshop on mobile systems, applications, and services for healthCare—co-held with ACM SenSys 2011

    Google Scholar 

  22. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13:21–27

    Article  MATH  Google Scholar 

  23. Pudil P, Novovicova J, Kittler J (1994) Floating search methods in feature selection. Pattern Recogn Lett 15(11):1119–1125

    Article  Google Scholar 

  24. Food, Nutrition Board NAoS (2002) Dietary reference intakes for energy, carbohydrates, fiber, fat, protein and amino acids. National Academy Press, Washington

    Google Scholar 

  25. U.S. Department of Health & Human Services UD, for Disease Control & Prevention C, for Chronic Disease Prevention & Health Promotion TNC (1996) Physical activity and health: a report of the surgeon general

    Google Scholar 

  26. Chen K, Sun M (1997) Improving energy expenditure estimation by using a triaxial accelerometer. J Appl Physiol 83(6):2112–2122

    Google Scholar 

  27. Mizell D (2003) Using gravity to estimate accelerometer orientation. In: Proceedings of the 7th IEEE international symposium on wearable computers, IEEE Computer Society, ISWC’03, pp 252–253

    Google Scholar 

  28. Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) SPINE-HRV: a BSN-based toolkit for heart rate variability analysis in the time-domain. Lecture notes in, electrical engineering, LNEE, vol 75, pp 369–389

    Google Scholar 

  29. Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) Time-domain heart rate variability analysis with the spine-HRV toolkit. In: Proceedings of the 3rd international conference on pervasive technologies related to assistive environments

    Google Scholar 

  30. McEwen B (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179

    Article  Google Scholar 

  31. Segerstrom SC, Miller GE (2004) Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130(4):601–630

    Article  Google Scholar 

  32. Yang HK, Lee JW, Lee KH, Lee YJ, Kim KS, Choi HJ, Kim DJ (2008) Application for the wearable heart activity monitoring system: analysis of the autonomic function of HRV. In: Proceedings of the 30th annual international conference on engineering in medicine and biology society, EMBS 2008, IEEE Press, pp 1258–1261

    Google Scholar 

  33. Raya C, Torrent M, Parera J, Angulo C, Catala A (2007) KneeMeasurer: a wearable interface for joint angle measurements. In: International congress on domotics, robotics and remote-assistance for all

    Google Scholar 

  34. Bo APL, Hayashibe M, Poignet P (2011) Joint angle estimation in rehabilitation with inertial sensors and its integration with kinect. In: Annual international conference of the IEEE engineering in medicine and biology society

    Google Scholar 

  35. Cooper G, Sheret I, McMillian L, Siliverdis K, Sha N, Hodgins D, Kenney L, Howard D (2009) Inertial sensor-based knee flexion/extension angle estimation. J Biomech 42(16):2678–2685

    Article  Google Scholar 

  36. Benocci M, Tacconi C, Farella E, Benini L, Chiari L, Vanzago L (2010) Accelerometer-based fall detection using optimized ZigBee data streaming. Microelectron J 41(11):703–710. doi:10.1016/j.mejo.2010.06.014, IEEE international workshop on advances in sensors and interfaces 2009

    Google Scholar 

  37. Chen J, Kwong K, Chang D, Luk J, Bajcsy R (2005) Wearable sensors for reliable fall detection. In: 27th annual international conference of the IEEE engineering in medicine and biology society 2005, IEEE-EMBS 2005, pp 3551–3554. doi: 10.1109/IEMBS.2005.1617246

  38. Kangas M, Konttila A, Lindgren P, Winblad I, Jamsa T (2008) Comparison of low-complexity fall detection algorithms for body attached accelerometers. Gait Posture 28(2):285–291. doi: 10.1016/j.gaitpost.2008.01.003

    Google Scholar 

  39. Caione C, Brunelli D, Benini L (2012) Distributed compressive sampling for lifetime optimization in dense wireless sensor networks. IEEE Trans Industr Inf 8(1):30–40. doi:10.1109/TII.2011.2173500

    Google Scholar 

  40. Caione C, Brunelli D, Benini L (2010) Compressive sensing optimization over zigbee networks. In: 2010 international symposium on industrial embedded systems (SIES), pp 36–44. doi:10.1109/SIES.2010.5551380

  41. Chiasserini C (2002) On the concept of distributed digital signal processing in wireless sensor networks. In: Proceedings of MILCOM 2002, vol 1, pp 260–264. doi:10.1109/MILCOM.2002.1180450

  42. Nikolaou M (2001) Model predictive controllers: a critical synthesis of theory and industrial needs. Advances in chemical engineering (Elsevier) 26:131–204. doi: 10.1016/S0065-2377(01)26003-7

  43. Moser C, Thiele L, Brunelli D, Benini L (2010) Adaptive power management for environmentally powered systems. IEEE Trans Comput 59(4):478–491. doi: 10.1109/TC.2009.158

    Google Scholar 

  44. Dondi D, Bertacchini A, Larcher L, Pavan P, Brunelli D, Benini L (2008) A solar energy harvesting circuit for low power applications. In: Sustainable energy technologies, 2008. ICSET 2008. IEEE international conference on, pp 945–949. doi: 10.1109/ICSET.2008.4747143

  45. Carli D, Brunelli D, Bertozzi D, Benini L (2010) A high-efficiency wind-flow energy harvester using micro turbine. In: Power electronics electrical drives automation and motion (SPEEDAM), 2010 international symposium on, pp 778–783. doi: 10.1109/SPEEDAM.2010.5542121

  46. Brunelli D, Dondi D, Bertacchini A, Larcher L, Pavan P, Benini L (2008) Photovoltaic scavenging systems: modeling and optimization. Microelectron J 40(9):1337–1344. doi: 10.1016/j.mejo.2008.08.013

    Google Scholar 

  47. Porcarelli D, Brunelli D, Magno M, Benini L (2012) A multi-harvester architecture with hybrid storage devices and smart capabilities for low power systems. In: Power electronics, electrical drives, automation and motion (SPEEDAM), 2012 international symposium on, pp 946–951. doi: 10.1109/SPEEDAM.2012.6264533

  48. Fortino G, Guerrieri A, Bellifemine F, Giannantonio R (2009) Platform-independent development of collaborative wireless body sensor network applications: Spine2. In: Proceedings of the 2009 IEEE international conference on systems, man and cybernetics, pp 3144–3150

    Google Scholar 

  49. Fortino G, Guerrieri A, Bellifemine F, Giannantonio R (2009) Spine2: developing bsn applications on heterogeneous sensor nodes. In: Proceedings of the IEEE international symposium on industrial embedded systems, pp 128–131

    Google Scholar 

  50. Fortino G, Pathan M, Di Fatta G (2012) BodyCloud: integration of cloud computing and body sensor networks. In: Proceedings of the 4th IEEE international conference on cloud computing technology and science

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatis Karnouskos .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Karnouskos, S., Marrón, P.J., Fortino, G., Mottola, L., Martínez-de Dios, J.R. (2014). Cooperating Objects in Healthcare Applications. In: Applications and Markets for Cooperating Objects. SpringerBriefs in Electrical and Computer Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45401-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45401-1_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45400-4

  • Online ISBN: 978-3-642-45401-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics