Mobility of Cooperating Objects

  • Stamatis KarnouskosEmail author
  • Pedro José Marrón
  • Giancarlo Fortino
  • Luca Mottola
  • José Ramiro Martínez-de Dios
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


Mobility is a key issue in Cooperating Objects. It has deep influences on the cooperation between objects and affects their main sensing, actuation and communication capabilities. Many factors should be considered when designing mobility management mechanisms for Cooperating Objects such as velocity, obstacles, radio propagation models, network scale, density and partitioning, among many others.


Wireless Sensor Network Unman Aerial System Camera Network Flight Crew Wireless Sensor Network Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pallottino L, Scordio VG, Frazzoli E, Bicchi A (2007) Decentralized cooperative policy for conflict resolution in multi-vehicle systems. IEEE Trans Robot 23(6):1170–1183Google Scholar
  2. 2.
    LaValle SM (2006) Planning Algorithms. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Alami R, Fleury S, Herrb M, Ingrand F, Robert F (1998) Multi-robot cooperation in the martha project. IEEE Robot Autom Mag 5(1):36–47Google Scholar
  4. 4.
    Lygeros J, Godbole D, Sastry S (1998) Verified hybrid controllers for automated vehicles. IEEE Trans Autom Control 43(4):522–539Google Scholar
  5. 5.
    Svestka P, Overmars M (1995) Coordinated motion planning for multiple car-like robots using probabilistic roadmaps. In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1631–1636Google Scholar
  6. 6.
    Yuta S, Premvuti S (1992) Coordinating autonomous and centralized decision making to achieve cooperative behaviors between multiple mobile robots. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, pp 1566–1574Google Scholar
  7. 7.
    O’Donnell P, Lozano-Periz T (1989) Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings of IEEE international conference on robotics and automation, vol 1, pp 484–489Google Scholar
  8. 8.
    Olmi R, Secchi C, Fantuzzi C (2008) Coordination of multiple agvs in an industrial application. In: Proceedings of IEEE international conference on robotics and automation, pp 1916–1921.Google Scholar
  9. 9.
    Guo Y, Parker L (2002) A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings of IEEE international conference on robotics and automation, vol 3, pp 2612–2619Google Scholar
  10. 10.
    LaValle S, Hutchinson S (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans Robot Autom 14(6):912–925Google Scholar
  11. 11.
    Azarm K, Schmidt G (1997) Conflict-free motion of multiple mobile robots based on decentralized motion planning and negotiation. In: Proceedings of IEEE international conference on robotics and automation, vol 4, pp 3526–3533Google Scholar
  12. 12.
    Wang J (1995) Operating primitives supporting traffic regulation and control of mobile robots under distributed robotic systems. In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1613–1618Google Scholar
  13. 13.
    Wang J, Premvuti S (1995) Distributed traffic regulation and control for multiple autonomous mobile robots operating in discrete space. In: Proceedings of IEEE international conference on robotics and automation, vol 2, pp 1619–1624Google Scholar
  14. 14.
    Lamport L (1986 I and II) The mutual exclusion problem: part i—a theory of interprocess communication and part ii—statement and solutions. J ACM (JACM) 33(2):313–348Google Scholar
  15. 15.
    Roszkowska E, Reveliotis S (2008) On the liveness of guidepath-based, zoned-controlled, dynamically routed, closed traffic systems. IEEE Trans Autom Control 53:1689–1695Google Scholar
  16. 16.
    Fanti M (2002) Event-based controller to avoid deadlock and collisions in zone-control agvs. Int J Prod Res 40(6):1453–1478Google Scholar
  17. 17.
    Reveliotis S, Ferreira P (2002) Deadlock avoidance policies for automated manufacturing cells. IEEE Trans Robot Autom 12(6):845–857Google Scholar
  18. 18.
    Reveliotis SA (2000) Conflict resolution in agv systems. IIE Trans 32:647–659Google Scholar
  19. 19.
    Jager M, Nebel B (2001) Decentralized collision avoidance, deadlock detection, and deadlock resolution for multiple mobile robots. In: Proceedings of IEEE/RSJ international Ccnference on intelligent robots and systems, vol 3, pp 1213–1219Google Scholar
  20. 20.
    Simmons R, Smith T, Dias MB, Goldberg D, Hershberger D, Stentz A, Zlot R (2002) A layered architecture for coordination of mobile robots. In: Proceedings of multi-robot systems: from swarms to intelligent automata, Kluwer, Alphen aan den RijnGoogle Scholar
  21. 21.
    Wu N, Zhou M (2007) Shortest routing of bidirectional automated guided vehicles avoiding deadlock and blocking. IEEE/ASME Trans Mechatron 12(1):63–72Google Scholar
  22. 22.
    Fanti M (2002) A deadlock avoidance strategy for agv systems modelled by coloured petri nets. In: Proceedings of 6th international workshop on discrete event systems, pp 61–66Google Scholar
  23. 23.
    Lochana Moorthy R, Hock-Guan W, Wing-Cheong N, Chung-Piaw T (2003) Cyclic deadlock prediction and avoidance for zone-controlled agv system. Int J Prod Econ 83(3):309–324Google Scholar
  24. 24.
    Singhal M (1989) Deadlock detection in distributed systems. Computer 22(11):37–48CrossRefGoogle Scholar
  25. 25.
    Yoo J, Sim E, Cao C, Park J (2005) An algorithm for deadlock avoidance in an agv system. Int J Adv Manuf Technol 26(5):659–668Google Scholar
  26. 26.
    Lehmann M, Grunow M, Günther H (2006) Deadlock handling for real-time control of agvs at automated container terminals. OR Spectrum 28(4):631–657CrossRefzbMATHGoogle Scholar
  27. 27.
    Purwin O, D’Andrea R, Lee JW (2008) Theory and implementation of path planning by negotiation for decentralized agents. Robot Auton Syst 56:422–436Google Scholar
  28. 28.
    Wurman PR, D’Andrea R, Mountz M (2007) Coordinating hundreds of cooperative, autonomous vehicles in warehouses. In: Proceedings of the 19th national conference on innovative applications of artificial intelligence, vol 2, AAAI Press, Menlo Park, pp 1752–1759.
  29. 29.
    Althoff M, Stursberg O, Buss M (2009) Model-based probabilistic collision detection in autonomous driving. IEEE Trans Intell Trans Syst 10(2):299–310. doi: 10.1109/TITS.2009.2018966 Google Scholar
  30. 30.
    Roozbehani H, D’Andrea R (2011) Adaptive highways on a grid. Robotics Research, Springer Tracts in Advanced Robotics, vol 70. Springer, Berlin, Heidelberg, pp 661–680Google Scholar
  31. 31.
    Verma R, Vecchio D (2011) Semiautonomous multivehicle safety. IEEE Robot Autom Mag 18(3):44–54Google Scholar
  32. 32.
    Bicchi A, Fagiolini A, Pallottino L (2010) Towards a society of robots. IEEE Robot Autom Mag 17(4):26–36Google Scholar
  33. 33.
    Olfati-Saber R, Fax J, Murray R (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215Google Scholar
  34. 34.
    Jadbabaie A, Lin J, Morse A (2003) Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001Google Scholar
  35. 35.
    Fax J, Murray R (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476. doi: 10.1109/TAC.2004.834433 Google Scholar
  36. 36.
    Fagiolini A, Pellinacci M, Valenti G, Dini G, Bicchi A (2008) Consensus-based distributed intrusion detection for multi-robots. In: Proceedings of IEEE interanational conference on robotics and automation, pp 120–127. doi: 10.1109/ROBOT.2008.4543196
  37. 37.
    Fagiolini A, Martini S, Dubbini N, Bicchi A (2009) Distributed consensus on boolean information. In: Proceedings of 1st IFAC workshop on estimation and control of networked systems (NecSys), Venice, pp 72–77Google Scholar
  38. 38.
    European Commission (2011) Flightpath 2050: Europe’s vision for aviation.
  39. 39.
    Advanced air transportation technologies project office (NASA) (2002) DAG-TM concept element 5 en-route free maneuvering operational concept descriptionGoogle Scholar
  40. 40.
    Michael O, Ball CYC, Hoffman Robert, Vossen T (2012) Collaborative decision making in air traffic management: current and future research directions. Technical Report, National Center of Excellence for Aviation Operations Research (NEXTOR II)Google Scholar
  41. 41.
    Surveillance, WP2 CRSPSWG (1999) Operational and Technical Considerations on ASAS applications. Technical Report, International Civil Aviation Organization (ICAO)Google Scholar
  42. 42.
    Team AP (2002) Principles of operations for the use of ASAS. Technical Report, FAA-Eurocontrol R &D CommitteeGoogle Scholar
  43. 43.
    WP5 EP (1998) Assessment of emerging technologies: the specific case of ADS-B/ASAS. Technical Report, European CommissionGoogle Scholar
  44. 44.
    SESAR Consortium (2010) European air traffic management master plan. Technical Report, Single European Sky ATM Research (SESAR).
  45. 45.
    Huerta MP (2012) NextGen Implementation Plan. Technical Report, Federal Aviation Administration (FAA).
  46. 46.
    Delaney J, Heath G, Chave A, Kirkham H, Howe B, Wilcock W, Beauchamp P, Maffei A (2001) NEPTUNE: real-time, long-term ocean and earth studies at the scale of a tectonic plate. In: OCEANS’01. MTS/IEEE Conference and Exhibition, pp 1366–1373Google Scholar
  47. 47.
    Dawe T, Bird L, Talkovic M, Brekke K, Osborne D, Etchemendy S (2005) Operational support of regional cabled observatories the mars facility. In: OCEANS’05. Proceedings of MTS/IEEE, pp 1–6Google Scholar
  48. 48.
    Borges de Sousa J, Johansson KH, Silva J, Speranzon A (2007) A verified hierarchical control architecture for co-ordinated multi-vehicle operations. Int J Adapt Control Signal Process 21(2–3):159–188. doi: 10.1002/acs.920 Google Scholar
  49. 49.
    Pinto J, Calado P, Braga J, Dias P, Martins R, Marques E (2012) Implementation of a control architecture for networked vehicle systems. In: IFAC workshop—navigation, guidance and control of underwater vehicles, PortoGoogle Scholar
  50. 50.
    Martins R, Dias P, Marques E, Pinto J, ao Sousa J, Pereira F (2009) IMC: a communication protocol for networked vehicles and sensors. In: Proceedings of the IEEE oceans europe (OCEANS’09). doi: 10.1109/OCEANSE.2009.5278245
  51. 51.
    Cerf V, Burleigh S, Hooke A, Torgerson L, Durst R, Scott K, Fall K, Weiss H (2007) Delay-tolerant networking architecture. RFC 4838 (Informational).
  52. 52.
    Mazzolai B, Mattoli V, Laschi C, Salvini P, Ferri G, Ciaravella G, Dario P (2008) Networked and cooperating robots for urban hygiene: the eu funded dustbot project. In: Proceedings of the 5th international conference on ubiquitous robots and ambient intelligenceGoogle Scholar
  53. 53.
    Sanfeliu A, Andrade-Cetto J, Barbosa M, Bowden R, Capitan J, Corominas A, Gilbert A, Illingworth J, Merino L, Mirats J, Moreno P, Ollero A, Sequeira J, Spaan M (2010) Decentralized sensor fusion for ubiquitous networking robotics in urban areas. Sensors 10:2274–2314Google Scholar
  54. 54.
    Capitán J, Merino L, Caballero F, Ollero A (2011) Decentralized delayed-state information filter (DDSIF): a new approach for cooperative decentralized tracking. Robot Auton Syst 59(6):376–388. doi: 10.1016/j.robot.2011.02.001
  55. 55.
    Moore KL, Chen Y, Song Z (2004) Diffusion-based path planning in mobile actuator-sensor networks (mas-net): some preliminary results. In: Proceedings of the SPIE the international society for optical engineering, vol 5421, pp 58–69Google Scholar
  56. 56.
    Batalin M, Sukhatme G, Hattig M (2004) Mobile robot navigation using a sensor network. In: Proceedings of the IEEE international conference on robotics and automation, pp 636–642Google Scholar
  57. 57.
    Yao Z, Gupta K (2010) Distributed roadmaps for robot navigation in sensor networks. In: Proceedings of the IEEE international conference on robotics and automation, pp 3078–3063Google Scholar
  58. 58.
    Bisnik N, Abouzeid A, Isler V (2007) Stochastic event capture using mobile sensors subject to a quality metric. IEEE Trans Robot 23(4):676–692Google Scholar
  59. 59.
    Batalin M, Sukhatme G (2007) The design and analysis of an efficient local algorithm for coverage and exploration based on sensor network deployment. IEEE Trans Robot 23(4):661–675Google Scholar
  60. 60.
    Corke P, Hrabar S, Peterson R, Rus D, Saripalli S, Sukhatme G (2004) Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle. In: Proceedings of the IEEE international conference on robotics and automation, pp 3602–3608Google Scholar
  61. 61.
    Sukkarieh S, Nettleton E, Kim JH, Ridley M, Goktogan A, Durrant-Whyte H (2003) The anser project: data fusion across multiple uninhabited air vehicles. Int J Robot Res 22(7–8):505–539Google Scholar
  62. 62.
    Hollinger G, Singh S, Djugash J, Kehagias A (2009) Efficient multi-robot search for a moving target. Int J Robot Res 22(2):201–219Google Scholar
  63. 63.
    Hsieh M, Chaimowicz L, Cowley A, Grocholsky B, Keller J, Kumar V, Taylor C, Endo Y, Arkin R, Jung B, Wolf D, sukhatme G, MacKenzie D (2007) Adaptive teams of autonomous aerial and ground robots for situational awareness. J Field Robot 24(11):991–1014Google Scholar
  64. 64.
    Maza I, Caballero F, Capitan J, Martínez-deDios J, Ollero A (2011) A distributed architecture for a robotic platform with aerial sensor transportation and self-deployment capabilities. J Field Robot 28(3):303–328Google Scholar
  65. 65.
    Caballero F, Maza I, Merino L, Ollero A (2008) A particle filtering method for wireless sensor network localization with an aerial robot beacon. In: Proceedings of international Conference on robotics and automation (ICRA2008)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Stamatis Karnouskos
    • 1
    Email author
  • Pedro José Marrón
    • 2
  • Giancarlo Fortino
    • 3
  • Luca Mottola
    • 4
  • José Ramiro Martínez-de Dios
    • 5
  1. 1.SAPKarlsruheGermany
  2. 2.Netzworked Embedded Systems GroupUniversity of Duisburg-EssenDuisburgGermany
  3. 3.University of CalabriaCalabriaItaly
  4. 4.Dipartimento di Elettronica ed InformazionePolitecnico di MilanoMilanoItaly
  5. 5.University of SevilleSevilleSpain

Personalised recommendations