Advertisement

Semantic Processing of Semitic Languages

Chapter
Part of the Theory and Applications of Natural Language Processing book series (NLP)

Abstract

In this chapter, we cover semantic processing in Semitic languages. We will present models of semantic processing over words and their relations in sentences, namely paradigmatic and syntagmatic models. We will contrast the processing of Semitic languages against English, illustrating some of the challenges – and clues – due to the inherent unique characteristics of Semitic languages.

Keywords

Word Sense Semantic Distance Statistical Machine Translation Parallel Corpus Noun Noun Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abend O, Reichart R, Rappoport A (2009) Unsupervised argument identification for semantic role labeling. In: Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP, Singapore. Association for Computational Linguistics, Suntec, pp 28–36. http://www.aclweb.org/anthology/P/P09/P09-1004
  2. 2.
    Agirre E, Lopez de Lacalle Lekuona O (2003) Clustering WordNet word senses. In: Proceedings of the 1st international conference on recent advances in natural language processing (RANLP-2003), BorovetsGoogle Scholar
  3. 3.
    Al-Haj H, Wintner S (2010) Identifying multi-word expressions by leveraging morphological and syntactic idiosyncrasy. In: Proceedings of the 23rd international conference on computational linguistics (Coling 2010), Coling 2010 Organizing Committee, Beijing, pp 10–18. http://www.aclweb.org/anthology/C10-1002
  4. 4.
    Androutsopoulos I, Malakasiotis P (2010) A survey of paraphrasing and textual entailment methods. J Artif Intell Res (JAIR) 38:135–187zbMATHGoogle Scholar
  5. 5.
    Attia M, Toral A, Tounsi L, Pecina P, van Genabith J (2010) Automatic extraction of Arabic multiword expressions. In: Proceedings of the 2010 workshop on multiword expressions: from theory to applications, Coling 2010 Organizing Committee, Beijing, pp 19–27. http://www.aclweb.org/anthology/W10-3704
  6. 6.
    Baker CF, Fillmore CJ, Lowe JB (1998) The berkeley FrameNet project. In: COLING-ACL ’98: proceedings of the conference, University of Montréal, pp 86–90Google Scholar
  7. 7.
    Banerjee S, Pedersen T (2003) Extended gloss overlaps as a measure of semantic relatedness. In: Proceedings of the eighteenth international joint conference on artificial intelligence (IJCAI-03), Acapulco, pp 805–810Google Scholar
  8. 8.
    Banko M, Cafarella MJ, Soderl S, Broadhead M, Etzioni O (2007) Open information extraction from the web. In: IJCAI, Hyderabad, pp 2670–2676Google Scholar
  9. 9.
    Bannard C, Callison-Burch C (2005) Paraphrasing with bilingual parallel corpora. In: Proceedings of the 43rd annual meeting of the Association for Computational Linguistics (ACL2005), Ann Arbor. Association for Computational Linguistics, pp 597–604Google Scholar
  10. 10.
    Carpuat M, Diab M (2010) Task-based evaluation of multiword expressions: a pilot study in statistical machine translation. In: Human language technologies: the 2010 annual conference of the North American chapter of the Association for Computational Linguistics, Los Angeles. Association for Computational Linguistics, pp 242–245. http://www.aclweb.org/anthology/N10-1029
  11. 11.
    Carreras X, Màrquez L (2005) Introduction to the CoNLL-2005 shared task: semantic role labeling. In: Proceedings of the ninth conference on computational natural language learning (CoNLL-2005), Ann Arbor. Association for Computational Linguistics, pp 152–164. http://www.aclweb.org/anthology/W/W05/W05-0620
  12. 12.
    Chen J, Rambow O (2003) Use of deep linguistic features for the recognition and labeling of semantic arguments. In: Proceedings of the 2003 conference on empirical methods in natural language processing, SapporoGoogle Scholar
  13. 13.
    Cruse DA (1986) Lexical semantics. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Culo O, Erk K, Pado S, Schulte im Walde S (2008) Comparing and combining semantic verb classifications. Lang Resour Eval 42(3):265–291. doi:10.1007/s10579-008-9070-zGoogle Scholar
  15. 15.
    Dagan I, Itai A (1994) Word sense disambiguation using a second language monolingual corpus. Comput Linguist 20. http://aclweb.org/anthology-new/J/J94/J94-4003.pdf
  16. 16.
    Dagan I, Lee L, Pereira F (1999) Similarity-based models of cooccurrence probabilities. Mach Learn 34(1–3):43–69CrossRefzbMATHGoogle Scholar
  17. 17.
    Das D, Smith NA (2011) Semi-supervised frame-semantic parsing for unknown predicates. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, Portland. Association for Computational Linguistics, pp 1435–1444. http://www.aclweb.org/anthology/P11-1144
  18. 18.
    Diab M (2003) Word sense disambiguation within a multilingual framework. PhD thesis, University of Maryland, College ParkGoogle Scholar
  19. 19.
    Diab MT (2004) An unsupervised approach for bootstrapping Arabic sense tagging. In: Farghaly A, Megerdoomian K (eds) COLING 2004 computational approaches to Arabic script-based languages, COLING, Geneva, pp 43–50Google Scholar
  20. 20.
    Diab M, Bhutada P (2009) Verb noun construction mwe token classification. In: Proceedings of the workshop on multiword expressions: identification, interpretation, disambiguation and applications, Suntec. Association for Computational Linguistics, pp 17–22. http://www.aclweb.org/anthology/W/W09/W09-2903
  21. 21.
    Diab M, Krishna M (2009) Handling sparsity for verb noun MWE token classification. In: Proceedings of the workshop on geometrical models of natural language semantics, Athens. Association for Computational Linguistics, pp 96–103. http://www.aclweb.org/anthology/W09-0213
  22. 22.
    Diab M, Krishna M (2009) Unsupervised classification for vnc multiword expressions tokens. In: CICLING, Mexico CityGoogle Scholar
  23. 23.
    Diab M, Moschitti A (2007) Semantic parsing for Modern Standard Arabic. In: Proceedings of recent advances in natural language processing (RANLP), BorovetsGoogle Scholar
  24. 24.
    Diab M, Resnik P (2002) An unsupervised method for word sense tagging using parallel corpora. In: Proceedings of 40th annual meeting of the Association for Computational Linguistics, Philadelphia. Association for Computational Linguistics, pp 255–262, doi:10.3115/1073083.1073126. http://www.aclweb.org/anthology/P02-1033
  25. 25.
    Diab M, Hacioglu K, Jurafsky D (2004) Automatic tagging of Arabic text: from raw text to base phrase chunks. In: Susan Dumais DM, Roukos S (eds) HLT-NAACL 2004: Short papers, Boston. Association for Computational Linguistics, pp 149–152CrossRefGoogle Scholar
  26. 26.
    Diab M, Alkhalifa M, ElKateb S, Fellbaum C, Mansouri A, Palmer M (2007) Semeval-2007 task 18: Arabic semantic labeling. In: Proceedings of the fourth international workshop on semantic evaluations (SemEval-2007), Association for Computational Linguistics, Prague, pp 93–98. http://www.aclweb.org/anthology/S/S07/S07-1017
  27. 27.
    Diab M, Alkhalifa M, ElKateb S, Fellbaum C, Mansouri A, Palmer M (2007) Semeval-2007 task 18: Arabic semantic labeling. In: Proceedings of the fourth international workshop on semantic evaluations (SemEval-2007), Prague. Association for Computational Linguistics, pp 93–98. http://www.aclweb.org/anthology/W/W07/W07-2017
  28. 28.
    Diab M, Ghoneim M, Habash N (2007) Arabic diacritization in the context of statistical machine translation. In: Proceedings of machine translation summit (MT-Summit), CopenhagenGoogle Scholar
  29. 29.
    Diab M, Moschitti A, Pighin D (2007) Cunit: a semantic role labeling system for Modern Standard Arabic. In: Proceedings of the fourth international workshop on semantic evaluations (SemEval-2007), Prague. Association for computational linguistics, pp 133–136. http://www.aclweb.org/anthology/W/W07/W07-2026
  30. 30.
    Diab M, Moschitti A, Pighin D (2008) Semantic role labeling systems for Arabic using kernel methods. In: Proceedings of ACL-08: HLT, Columbus. Association for Computational Linguistics, pp 798–806. http://www.aclweb.org/anthology/P/P08/P08-1091
  31. 31.
    Dunning T (1993) Accurate methods for the statistics of surprise and coincidence. Comput Linguist 19(1):61–74Google Scholar
  32. 32.
    Elkateb S, Black W, Rodriguez H, Alkhalifa M, Vossen P, Pease A, Fellbaum C (2006) Building a wordnet for Arabic. In: Proceedings of the fifth international conference on language resources and evaluation, LREC, GenoaGoogle Scholar
  33. 33.
    Elmougy S, Hamza T, Noaman HM (2008) Naive Bayes classifier for Arabic word sense disambiguation. In: Proceedings of INFOS 2008, Cairo, pp 27–29Google Scholar
  34. 34.
    Erk K, Pado S (2006) Shalmaneser – a toolchain for shallow semantic parsing. In: Proceedings of the language resources and evaluation conference (LREC), GenoaGoogle Scholar
  35. 35.
    Fellbaum C (1998) Wordnet: an electronic lexical database. MIT, CambridgezbMATHGoogle Scholar
  36. 36.
    Firth JR (1957) A synopsis of linguistic theory 1930–1955. Studies in linguistic analysis (special volume of the Philological Society). Blackwell, Oxford, pp 1–32Google Scholar
  37. 37.
    Frege G (1892) Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische Kritik 100:25–50Google Scholar
  38. 38.
    Fung P, Yee LY (1998) An IR approach for translating new words from nonparallel, comparable texts. In: Proceedings of coling – ACL, Montreal, pp 414–420Google Scholar
  39. 39.
    Giampiccolo D, Magnini B, Dagan I, Dolan B (2007) The third Pascal recognizing textual entailment challenge. In: Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing, Prague. Association for Computational Linguistics, pp 1–9. http://www.aclweb.org/anthology/W/W07/W07-1401
  40. 40.
    Gildea D, Jurafsky D (2002) Automatic labeling of semantic roles. Comput Linguist 28(3):245–288. http://www.cs.rochester.edu/~gildea/gildea-cl02.pdf Google Scholar
  41. 41.
    Gildea D, Palmer M (2002) The necessity of parsing for predicate argument recognition. In: Proceedings of the 40th annual conference of the Association for Computational Linguistics (ACL-02), PhiladelphiaGoogle Scholar
  42. 42.
    Goldwasser D, Reichart R, Clarke J, Roth D (2011) Confidence driven unsupervised semantic parsing. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, Portland. Association for Computational Linguistics, pp 1486–1495. http://www.aclweb.org/anthology/P11-1149
  43. 43.
    Habash N (2010) Introduction to Arabic natural language processing. Morgan & Claypool, San RafaelGoogle Scholar
  44. 44.
    Habash N, Rambow O (2005) Arabic tokenization, part-of-speech tagging and morphological disambiguation in one fell swoop. In: Proceedings of the 43rd annual meeting of the Association for Computational Linguistics (ACL’05), Ann Arbor. Association for Computational Linguistics, pp 573–580. doi:10.3115/1219840.1219911, http://www.aclweb.org/anthology/P05-1071
  45. 45.
    Habash N, Rambow O (2007) Arabic diacritization through full morphological tagging. In: Human language technologies 2007: the conference of the North American chapter of the Association for Computational Linguistics; Companion Volume, Short Papers, Rochester. Association for Computational Linguistics, pp 53–56. http://www.aclweb.org/anthology/N/N07/N07-2014
  46. 46.
    Haghighi A, Toutanova K, Manning C (2005) A joint model for semantic role labeling. In: Proceedings of the ninth conference on computational natural language learning (CoNLL-2005), Ann Arbor. Association for Computational Linguistics, pp 173–176. http://www.aclweb.org/anthology/W/W05/W05-0623
  47. 47.
    Harris ZS (1940) Review of Louis H. Gray, foundations of language (Macmillan, New York 1939). Language 16(3):216–231CrossRefGoogle Scholar
  48. 48.
    Hawwari A, Bar K, Diab M (2012) Building an Arabic multiword expressions repository. In: Proceedings of the ACL 2012 joint workshop on statistical parsing and semantic processing of morphologically rich languages, Jeju. Association for Computational Linguistics, pp 24–29. http://www.aclweb.org/anthology/W12-3403
  49. 49.
    Hirst G, Budanitsky A (2005) Correcting real-word spelling errors by restoring lexical cohesion. Nat Lang Eng 11(1):87–111CrossRefGoogle Scholar
  50. 50.
    Jackendoff R (1983) Semantics and cognition. MIT, CambridgeGoogle Scholar
  51. 51.
    Jackendoff R (1990) Semantic structures. MIT, CambridgeGoogle Scholar
  52. 52.
    Kingsbury P, Palmer M (2003) Propbank: the next level of treebank. In: Proceedings of treebanks and lexical theories, VäxjöGoogle Scholar
  53. 53.
    Kipper K, Korhonen A, Ryant N, Palmer M (2006) Extending VerbNet with novel verb classes. In: Proceedings of the sixth international conference on language resources and evaluation, GenoaGoogle Scholar
  54. 54.
    Lang J, Lapata M (2011) Unsupervised semantic role induction via split-merge clustering. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, Portland. Association for Computational Linguistics, pp 1117–1126. http://www.aclweb.org/anthology/P11-1112
  55. 55.
    Lee JH, Kim MH, Lee YJ (1993) Information retrieval based on conceptual distance in IS-A hierarchies. J Doc 49(2):188–207CrossRefGoogle Scholar
  56. 56.
    Lenci A, McGillivray B, Montemagni S, Pirrelli V (2008) Unsupervised acquisition of verb subcategorization frames from shallow-parsed corpora. In: Proceedings of the sixth international conference on language resources and evaluation (LREC’08), Marrakech. http://www.lrec-conf.org/proceedings/lrec2008/
  57. 57.
    Lesk M (1986) Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proceedings of the 5th annual international conference on systems documentation, Toronto, pp 24–26Google Scholar
  58. 58.
    Levin B (1993) English verb classes and alternations: a preliminary investigation. University Of Chicago Press, chicagoGoogle Scholar
  59. 59.
    Levinson D (1999) Corpus-based method for unsupervised word sense disambiguation. In: Proceedings of the workshop on machine learning in human language technology, advanced course on artificial intelligence (ACAI’99), Chania, pp 267–273Google Scholar
  60. 60.
    Li J, Zhou G, Ng HT (2010) Joint syntactic and semantic parsing of Chinese. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, Uppsala. Association for Computational Linguistics, pp 1108–1117. http://www.aclweb.org/anthology/P10-1113
  61. 61.
    Lin D (1998) An information-theoretic definition of similarity. In: Proceedings of the 15th international conference on machine learning, San Francisco, pp 296–304Google Scholar
  62. 62.
    Lüdeling A, Kytö M (eds) (2009) Corpus linguistics. An international handbook. Handbooks of linguistics and communication science, vol 2. Mouton de Gruyter, BerlinGoogle Scholar
  63. 63.
    Maamouri M, Bies A, Buckwalter T, Diab M, Habash N, Rambow O, Tabessi D (2006) Developing and using a pilot dialectal Arabic treebank. In: Fifth international conference on language resources and evaluation (LREC2006), GenoaGoogle Scholar
  64. 64.
    Maamouri M, Bies A, Kulick S (2008) Enhanced annotation and parsing of the Arabic treebank. In: INFOS, CairoGoogle Scholar
  65. 65.
    Madnani N, Dorr B (2010) Generating phrasal and sentential paraphrases: a survey of data-driven methods. Comput Linguist 36(3):341–387CrossRefMathSciNetGoogle Scholar
  66. 66.
    Marton Y (2010) Improved statistical machine translation using monolingual text and a shallow lexical resource for hybrid phrasal paraphrase generation. In: Proceedings of the AMTA, DenverGoogle Scholar
  67. 67.
    Marton Y, Callison-Burch C, Resnik P (2009) Improved statistical machine translation using monolingually-derived paraphrases. In: Proceedings of EMNLP, SingaporeGoogle Scholar
  68. 68.
    Marton Y, Mohammad S, Resnik P (2009) Estimating semantic distance using soft semantic constraints in knowledge-source/corpus hybrid models. In: Proceedings of EMNLP, SingaporeGoogle Scholar
  69. 69.
    Merhbene L, Zouaghi A, Zrigui M (2010) Ambiguous Arabic words disambiguation. In: SNPD, London, pp 157–164Google Scholar
  70. 70.
    Mohammad S, Hirst G (2006) Distributional measures of concept-distance: a task-oriented evaluation. In: Proceedings of EMNLP, SydneyGoogle Scholar
  71. 71.
    Moschitti A (2004) A study on convolution kernels for shallow semantic parsing. In: Proceedings of the 42nd conference on Association for Computational Linguistic (ACL-2004), BarcelonaGoogle Scholar
  72. 72.
    Moschitti A (2006) Efficient convolution kernels for dependency and constituent syntactic trees. In: ECML’06, BerlinGoogle Scholar
  73. 73.
    Moschitti A (2006) Making tree kernels practical for natural language learning. In: Proceedings of 11th conference of the European chapter of the Association for Computational Linguistics (EACL2006), Trento, pp 113–120Google Scholar
  74. 74.
    Moschitti A (2008) Kernel methods, syntax and semantics for relational text categorization. In: Proceedings of the 17th ACM conference on information and knowledge management (CIKM), Napa Valley. ACMGoogle Scholar
  75. 75.
    Moschitti A, Quarteroni S, Basili R, Manandhar S (2007) Exploiting syntactic and shallow semantic kernels for question answer classification. In: Proceedings of the 45th annual meeting of the Association of Computational Linguistics, Prague. Association for Computational Linguistics, pp 776–783. http://www.aclweb.org/anthology/P/P07/P07-0098
  76. 76.
    Moschitti A, Pighin D, Basili R (2008) Tree kernels for semantic role labeling. Comput Linguist 34(2):193–224. doi:10.1162/coli.2008.34.2.193, http://www.mitpressjournals.org/doi/abs/10.1162/coli.2008.34.2.193, http://www.mitpressjournals.org/doi/pdf/10.1162/coli.2008.34.2.193 Google Scholar
  77. 77.
    Mousser J (2010) A large coverage verb taxonomy for Arabic. In: Proceedings of the seventh conference on international language resources and evaluation (LREC’10), VallettaGoogle Scholar
  78. 78.
    Mousser J (2011) Classifying Arabic verbs using sibling classes. In: Proceedings of the ninth international conference on computational semantics (IWCS 2011), OxfordGoogle Scholar
  79. 79.
    Navigli R (2006) Meaningful clustering of senses helps boost word sense disambiguation performance. In: Proceedings of the 21st international conference on computational linguistics and the 44th annual meeting of the association, Sydney, pp 105–112Google Scholar
  80. 80.
    Navigli R (2009) Word sense disambiguation: a survey. ACM Comput Surv 41(2):10:1–10:69. doi:10.1145/1459352.1459355, http://doi.acm.org/10.1145/1459352.1459355 Google Scholar
  81. 81.
    Nelken R, Shieber SM (2005) Arabic diacritization using weighted finite-state transducers. In: Proceedings of the ACL workshop on computational approaches to Semitic languages, Ann Arbor. Association for Computational Linguistics, pp 79–86. http://www.aclweb.org/anthology/W/W05/W05-0711
  82. 82.
    Niles I, Pease A (2001) Origins of the IEEE standard upper ontology. In: Working notes of the IJCAI-2001 workshop on the IEEE standard upper ontology, SeattleGoogle Scholar
  83. 83.
    Ordan N, Wintner S (2007) Hebrew wordnet: a test case of aligning lexical databases across languages. Int J Trans Spec Issue Lex Resour Mach Trans 19(1):39–58Google Scholar
  84. 84.
    Pantel P, Lin D (2002) Discovering word senses from text. In: Proceedings of ACM conference on knowledge discovery and data mining (KDD-02), ACM, Edmonton, pp 613–619. http://www.patrickpantel.com/download/papers/2002/kdd02.pdf
  85. 85.
    Pasca M, Dienes P (2005) Aligning needles in a haystack: paraphrase acquisition across the web. In: Proceedings of IJCNLP, Jeju Island, pp 119–130Google Scholar
  86. 86.
    Patwardhan S, Pedersen T (2006) Using WordNet based context vectors to estimate the semantic relatedness of concepts. In: Proceedings of making sense of sense EACL workshop, Trento, pp 1–8Google Scholar
  87. 87.
    Poon H, Domingos P (2009) Unsupervised semantic parsing. In: Proceedings of the 2009 conference on empirical methods in natural language processing, Stroudsburg, EMNLP ’09, vol 1. Association for Computational Linguistics, pp 1–10. http://dl.acm.org/citation.cfm?id=1699510.1699512
  88. 88.
    Pradhan S, Hacioglu K, Ward W, Martin JH, Jurafsky D (2003) Semantic role parsing: adding semantic structure to unstructured text. In: Proceedings of the international conference on data mining (ICDM-2003), MelbourneGoogle Scholar
  89. 89.
    Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on semantic nets. IEEE Trans Syst Man Cybern 19(1):17–30CrossRefGoogle Scholar
  90. 90.
    Rapp R (1999) Automatic identification of word translations from unrelated English and German corpora. In: Proceedings of the 37th annual conference of the Association for Computational Linguistics, College Park, pp 519–525Google Scholar
  91. 91.
    Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res (JAIR) 11:95–130zbMATHGoogle Scholar
  92. 92.
    Rodriguez H, Farwell D, Farreres B, Bertran M, Alkhalifa M, Marti M, Black W, Elkateb S, Kirk J, Pease A, Vossen P, Fellbaum C (2008) Arabic wordnet: current state and future extensions. In: Proceedings of global WordNet conference, SzegedGoogle Scholar
  93. 93.
    Ross S (1976) A first course in probability. Macmillan, New YorkzbMATHGoogle Scholar
  94. 94.
    Roth R, Rambow O, Habash N, Diab M, Rudin C (2008) Arabic morphological tagging, diacritization, and lemmatization using lexeme models and feature ranking. In: Proceedings of ACL-08: HLT, Short Papers, Columbus. Association for Computational Linguistics, pp 117–120. http://www.aclweb.org/anthology/P/P08/P08-2030
  95. 95.
    Rozovskaya A, Sproat R (2007) Multilingual word sense discrimination: a comparative cross-linguistic study. In: Proceedings of the workshop on balto-slavonic natural language processing, Prague. Association for Computational Linguistics, pp 82–87. http://www.aclweb.org/anthology/W/W07/W07-1711
  96. 96.
    Sag IA, Baldwin T, Bond F, Copestake AA, Flickinger D (2002) Multiword expressions: a pain in the neck for nlp. In: Proceedings of the third international conference on computational linguistics and intelligent text processing, Mexico City. Springer, London, pp 1–15Google Scholar
  97. 97.
    Salton G, McGill MJ (1983) Introduction to modern information retrieval. McGraw-Hill, New YorkzbMATHGoogle Scholar
  98. 98.
    Schuetze H (1998) Automatic word sense discrimination. Comput Linguist 24(1):97–123Google Scholar
  99. 99.
    Schuetze H, Pedersen JO (1997) A cooccurrence-based thesaurus and two applications to information retreival. Inf Process Manag 33(3):307–318CrossRefGoogle Scholar
  100. 100.
    Schulte im Walde S (2000) Clustering verbs semantically according to their alternation behaviour. In: Proceedings of the 18th international conference on computational linguistics (COLING-00), Saarbrücken, pp 747–753Google Scholar
  101. 101.
    Schulte im Walde S (2009) the induction of verb frames and verb classes from corpora. In: Lüdeling A, Kytö M (eds) An international handbook. Handbooks of linguistics and communication science, vol 2. Mouton de Gruyter, Berlin, chap 44, pp 952–971Google Scholar
  102. 102.
    Snider N, Diab M (2006) Unsupervised induction of Modern Standard Arabic verb classes. In: Proceedings of the human language technology conference of the NAACL, Companion Volume: Short Papers, New York. Association for Computational Linguistics, pp 153–156. http://www.aclweb.org/anthology/N/N06/N06-2039
  103. 103.
    Snider N, Diab M (2006) Unsupervised induction of Modern Standard Arabic verb classes using syntactic frames and lsa. In: Proceedings of the COLING/ACL 2006 main conference poster sessions, Sydney. Association for Computational Linguistics, pp 795–802. http://www.aclweb.org/anthology/P/P06/P06-2102
  104. 104.
    Sun H, Jurafsky D (2004) Shallow semantic parsing of Chinese. In: Susan Dumais DM, Roukos S (eds) HLT-NAACL 2004: main proceedings, Boston. Association for Computational Linguistics, pp 249–256Google Scholar
  105. 105.
    Sun W (2010) Semantics-driven shallow parsing for Chinese semantic role labeling. In: Proceedings of the ACL 2010 conference short papers, Uppsala. Association for Computational Linguistics, pp 103–108. http://www.aclweb.org/anthology/P10-2019
  106. 106.
    Thompson CA, Levy R, Manning C (2003) A generative model for semantic role labeling. In: 14th European conference on machine learning, Cavtat-DubrovnikGoogle Scholar
  107. 107.
    Titov I, Klementiev A (2011) A bayesian model for unsupervised semantic parsing. In: Proceedings of the 49th annual meeting of the Association for Computational Linguistics: human language technologies, Portland. Association for Computational Linguistics, pp 1445–1455. http://www.aclweb.org/anthology/P11-1145
  108. 108.
    Tsvetkov Y, Wintner S (2010) Extraction of multi-word expressions from small parallel corpora. In: Coling 2010: posters, COLING 2010 Organizing Committee, Beijing, pp 1256–1264. http://www.aclweb.org/anthology/C10-2144
  109. 109.
    Turney PD, Pantel P (2010) From frequency to meaning: vector space models of semantics. J Artif Intell Res 37:141–188zbMATHMathSciNetGoogle Scholar
  110. 110.
    Vergyri D, Kirchhoff K (2004) Automatic diacritization of Arabic for acoustic modeling in speech recognition. In: Farghaly A, Megerdoomian K (eds) COLING 2004 computational approaches to arabic script-based languages, Geneva. COLING, pp 66–73Google Scholar
  111. 111.
    Weaver W (1949) Translation. In: Locke W, Booth A (eds) Machine translation of languages: fourteen essays. MIT, CambridgeGoogle Scholar
  112. 112.
    Wu F, Weld DS (2010) Open information extraction using wikipedia. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics, ACL ’10, Stroudsburg. Association for Computational Linguistics, pp 118–127. http://dl.acm.org/citation.cfm?id=1858681.1858694
  113. 113.
    Xue N, Palmer M (2004) Calibrating features for semantic role labeling. In: Lin D, Wu D (eds) Proceedings of EMNLP 2004, Barcelona. Association for Computational Linguistics, pp 88–94Google Scholar
  114. 114.
    Zaghouani W, Diab M, Mansouri A, Pradhan S, Palmer M (2010) The revised Arabic propbank. In: Proceedings of the fourth linguistic annotation workshop, Uppsala. Association for Computational Linguistics, pp 222–226. http://www.aclweb.org/anthology/W10-1836
  115. 115.
    Zbib R, Matsoukas S, Schwartz R, Makhoul J (2010) Decision trees for lexical smoothing in statistical machine translation. In: Proceedings of the joint fifth workshop on statistical machine translation and MetricsMATR, Uppsala. Association for Computational Linguistics, pp 428–437. http://www.aclweb.org/anthology/W10-1763
  116. 116.
    Zitouni I, Sorensen JS, Sarikaya R (2006) Maximum entropy based restoration of Arabic diacritics. In: Proceedings of the 21st international conference on computational linguistics and 44th annual meeting of the Association for Computational Linguistics, Sydney. Association for Computational Linguistics, pp 577–584. doi:10.3115/1220175.1220248. http://www.aclweb.org/anthology/P06-1073
  117. 117.
    Zouaghi A, Merhbene L, Zrigui M (2010) Combination of information retrieval methods with lesk algorithm for arabic word sense disambiguation. Artif Intell Rev 1–13. http://dx.doi.org/10.1007/s10462-011-9249-3

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceThe George Washington UniversityWashington, DCUSA
  2. 2.Microsoft Corp.BellevueUSA

Personalised recommendations