Autonomous Mobile Robots: A Distributed Computing Perspective

  • Giuseppe Prencipe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8243)


The distributed coordination and control of a team of autonomous mobile robots is a problem widely studied in a variety of fields, such as engineering, artificial intelligence, artificial life, robotics. Generally, in these areas, the problem is studied mostly from an empirical point of view.

Recently, the study of what can be computed by such team of robots has become increasingly popular in theoretical computer science and especially in distributed computing, where it is now an integral part of the investigations on computability by mobile entities [28]. In this paper we describe the current investigations on the algorithmic limitations of what autonomous mobile robots can do with respect to different coordination problems, and overview the main research topics that are gaining attention in this area.


Local Coordinate System Destination Point Autonomous Mobile Robot Common Coordinate System Mobile Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to thank Paola Flocchini and Nicola Santoro for their help and suggestions in the preparation of this paper.


  1. 1.
    Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: A distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. Robot. Autom. 15(5), 818–828 (1999)CrossRefGoogle Scholar
  3. 3.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multi-robot teams. IEEE Trans. Robot. Autom. 14, 926–939 (1998)CrossRefGoogle Scholar
  4. 4.
    Beckers, R., Holland, O.E., Deneubourg, J.L.: From local actions to global tasks: stigmergy and collective robotics. In: Artificial Life IV, 4th International Workshop on the Synthesis and Simulation of Living Systems (1994)Google Scholar
  5. 5.
    Beni, G., Hackwood, S.: Coherent swarm motion under distributed control. In: Proceedings of the DARS’92, pp. 39–52 (1992)Google Scholar
  6. 6.
    Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS LNCS. 2007, vol. 4838, pp. 52–66. Springer, Heidelberg (2007)Google Scholar
  7. 7.
    Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: International Conference on Intelligent Robots and System, pp. 226–234 (1995)Google Scholar
  8. 8.
    Chatzigiannakis, I., Markou, M., Nikoletseas, S.E.: Distributed circle formation for anonymous oblivious robots. In: Ribeiro, C.C., Martins, S.L. (eds.) WEA 2004. LNCS, vol. 3059, pp. 159–174. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Chaudhuri, S.G., Mukhopadhyaya, K.: Gathering asynchronous transparent fat robots. In: Janowski, T., Mohanty, H. (eds.) ICDCIT 2010. LNCS, vol. 5966, pp. 170–175. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    Chen, Q., Luh, J.Y.S.: Coordination and control of a group of small mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2315–2320 (1994)Google Scholar
  11. 11.
    Cieliebak, M., Gathering non-oblivious mobile robots. In: Proceedings of the 6th Latin American Symposium on Theoretical Informatics, pp. 577–588 (2004)Google Scholar
  12. 12.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 549–560. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399, 71–82 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Cord-Landwehr, A., et al.: Collisionless gathering of robots with an extent. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 178–189. Springer, Heidelberg (2011)Google Scholar
  17. 17.
    Cord-Landwehr, A., et al.: A new approach for analyzing convergence algorithms for mobile robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)Google Scholar
  18. 18.
    Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410(6–7), 481–499 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita. M.: The power of lights: synchronizing asynchronous robots using visible bits. In: Proceedings of the 32nd International Conference on Distributed Computing Systems (ICDCS), pp. 506–515 (2012)Google Scholar
  20. 20.
    Debest, X.A.: Remark about self-stabilizing systems. Comm. ACM 238(2), 115–117 (1995)Google Scholar
  21. 21.
    Défago, X., Konagaya, A.: Circle formation for oblivious anonymous mobile robots with no common sense of orientation. In: Workshop on Principles of Mobile Computing, pp. 97–104 (2002)Google Scholar
  22. 22.
    Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)CrossRefzbMATHGoogle Scholar
  23. 23.
    Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile robots. ACM Trans. Auton. Adapt. Syst. 3(4), 16:1–16:20 (2008)Google Scholar
  24. 24.
    Dieudonné, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Inf. Process. Lett. 4(104), 156–162 (2007)CrossRefGoogle Scholar
  25. 25.
    Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theor. Comput. Sci. 428(13), 47–57 (2012)CrossRefzbMATHGoogle Scholar
  26. 26.
    Donald, B.R., Jennings, J., Rus, D.: Information invariants for distributed manipulation. Int. J. Robot. Res. 16(5), 63–73 (1997)Google Scholar
  27. 27.
    Durfee, E.H.: Blissful ignorance: knowing just enough to coordinate well. In: ICMAS, pp. 406–413 (1995)Google Scholar
  28. 28.
    Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots. Morgan & Claypool, San Rafeal (2012)Google Scholar
  29. 29.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Hard tasks for weak robots: the role of common knowledge in pattern formation by autonomous mobile robots. In: Proceedings of the 10th International Symposium on Algorithm and Computation, pp. 93–102 (1999)Google Scholar
  30. 30.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous oblivious robots. Theor. Comput. Sci. 407(1–3), 412–447 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Fukuda, T., Kawauchi, Y., Asama, H., Buss. M.: Structure decision method for self organizing robots based on cell structures-CEBOT. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol.2, pp. 695–700 (1989)Google Scholar
  33. 33.
    Ganguli, A., Cortés, J., Bullo, F.: Multirobot rendezvous with visibility sensors in nonconvex environments. IEEE Trans. Robot. 25(2), 340–352 (2009)CrossRefGoogle Scholar
  34. 34.
    Gervasi, V., Prencipe, G.: Robotic Cops: the intruder problem. In: Proceedings of the IEEE Conference on Systems, Man and Cybernetics, pp. 2284–2289 (2003)Google Scholar
  35. 35.
    Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discrete Appl. Math. 143, 203–223 (2004)MathSciNetGoogle Scholar
  36. 36.
    Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: Gathering autonomous mobile robots with dynamic compasses: an optimal result. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 298–312. Springer, Heidelberg (2007)Google Scholar
  37. 37.
    Izumi, T., Souissi, S., Katayama, Y., Inuzuka, N., Defago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. Siam J. Comput. 41(1), 26–46 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Jung, D., Cheng, G., Zelinsky, A.: Experiments in realising cooperation between autonomous mobile robots. In: ISER (1997)Google Scholar
  39. 39.
    Katreniak. B.: Biangular circle formation by asynchronous mobile robots. In: Proceedings of the 12th International Colloquium on Structural Information and Communication Complexity (2005)Google Scholar
  40. 40.
    Katreniak, B.: Convergence with limited visibility by asynchronous mobile robots. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 125–137. Springer, Heidelberg (2011)Google Scholar
  41. 41.
    Kawauchi, Y., Inaba, M., Fukuda, T.: A principle of decision making of cellular robotic system (CEBOT). In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 833–838 (1993)Google Scholar
  42. 42.
    Lin, J., Morse, A.S., Anderson, B.D.O.: The multi-agent rendezvous problem. Part 2: the asynchronous case. SIAM J. Control Optim. 46(6), 2120–2147 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Martínez, S.: Practical multiagent rendezvous through modified circumcenter algorithms. Automatica 45(9), 2010–2017 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Matarić, M.J.: Interaction and intelligent behavior. Ph.D. thesis. MIT, May 1994Google Scholar
  45. 45.
    Miyamae, T., Ichikawa, S., Hara, F.: Emergent approach to circle formation by multiple autonomous modular robots. J. Robot. Mechatron. 21(1), 3–11 (2009)Google Scholar
  46. 46.
    Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine. In: Proceedings of the IEEE Conference on Robotics and Automation, pp. 441–448 (1994)Google Scholar
  47. 47.
    Noreils, F.R.: Toward a robot architecture integrating cooperation between mobile robots: application to indoor environment. Int. J. Robot. Res. 12, 79–98 (1993)CrossRefGoogle Scholar
  48. 48.
    Pagli, L., Prencipe, G., Viglietta, G.: Getting close without touching. In: Even, G., Halldórsson, M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 315–326. Springer, Heidelberg (2012)Google Scholar
  49. 49.
    Parker, L.E.: On the design of behavior-based multi-robot teams. J. Adv. Robot. 10(6), 547–578 (1996)CrossRefGoogle Scholar
  50. 50.
    Prencipe, G.: The effect of synchronicity on the behavior of autonomous mobile robots. Theory Comput. Syst. 38, 539–558 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    Samia, S., Défago, X., Katayama, T.: Convergence of a uniform circle formation algorithm for distributed autonomous mobile robots. In: Journés Scientifiques Francophones (JSF), Tokio, Japan (2004)Google Scholar
  53. 53.
    Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Trans. Auton. Adapt. Syst. 4(1), 1–27 (2009)CrossRefGoogle Scholar
  54. 54.
    Souissi, S., Yang, Y., Défago. X.: Fault-tolerant flocking in a k-bounded asynchronous system. In: Proceedings of 12th International Conference on Principles of Distributed Systems (OPODIS), pp. 145–163 (2008)Google Scholar
  55. 55.
    Souissi, S., Yang, Y., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84, 29–36 (2011)CrossRefGoogle Scholar
  56. 56.
    Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns with many mobile robots. J. Robot. Syst. 13, 127–139 (1996)CrossRefzbMATHGoogle Scholar
  57. 57.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. Siam J. Comput. 28(4), 1347–1363 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  58. 58.
    Tanaka, O.: Forming a circle by distributed anonymous mobile robots. Technical report, Department of Electrical Engineering, Hiroshima University, Hiroshima, Japan (1992)Google Scholar
  59. 59.
    Volpi, V.: Sycamore: a 2D–3D simulation environment for autonomous mobile robots algorithms.
  60. 60.
    Wang, P.K.C.: Navigation strategies for multiple autonomous mobile robots moving in formation. J. Robot. Syst. 8(2), 177–195 (1991)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations