Abstract
Identifying that the same meaning is expressed by, or can be inferred from, various language expressions is a major challenge for natural language understanding applications such as information extraction, question answering and automatic summarization. Dagan and Glickman [5] proposed Textual Entailment, the task of deciding whether a target text follows from a source text, as a unifying framework for modeling language variability, which has often been addressed in an application-specific manner. In this paper we describe the series of benchmarks developed for the textual entailment recognition task, known as the PASCAL RTE Challenges. As a concrete example, we describe in detail the second RTE challenge, in which our methodology was consolidated, and served as a basis for the subsequent RTE challenges. The impressive success of these challenges established textual entailment as an active research area in natural language processing, attracting a growing community of researchers.
Keywords
- Question Answering
- Computational Linguistics
- Information Extraction System
- Textual Entailment
- Entailment System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Baker, C., Fillmore, C., Lowe, J.: The Berkeley Framenet project. In: Proceedings of the COLING-ACL, Montreal, Canada (1998)
Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini, B., Szpektor, I.: The Second PASCAL Recognising Textual Entailment Challenge. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Bar-Haim, R., Szpecktor, I., Glickman, O.: Definition and analysis of intermediate entailment levels. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, Michigan, pp. 55–60. Association for Computational Linguistics (June 2005)
Burger, J., Ferro, L.: Generating an entailment corpus from news headlines. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, Michigan, pp. 49–54. Association for Computational Linguistics (June 2005)
Dagan, I., Glickman, O.: Probabilistic textual entailment: Generic applied modeling of language variability. In: PASCAL Workshop on Text Understanding and Mining (2004)
Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177–190. Springer, Heidelberg (2006)
de Marneffe, M.C., MacCartney, B., Grenager, T., Cer, D., Rafferty, A., Manning, C.D.: Learning to distinguish valid textual entailments. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. Language, Speech and Communication. MIT Press (1998)
Giampiccolo, D., Magnini, B., Dagan, I., Dolan, B.: The Third PASCAL Recognizing Textual Entailment Challenge. In: Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing (2007)
Giampiccolo, D., Trang Dang, H., Magnini, B., Dagan, I., Dolan, B.: The Fourth PASCAL Recognizing Textual Entailment Challenge. In: Proceedings of the TAC 2008 Workshop (2008)
Glickman, O., Dagan, I., Koppel, M.: A lexical alignment model for probabilistic textual entailment. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 287–298. Springer, Heidelberg (2006)
Harabagiu, S., Hickl, A., Lacatusu, F.: Satisfying information needs with multi-document summaries. Inf. Process. Manage. 43(6), 1619–1642 (2007)
Hickl, A., Harabagiu, S.: Methods for using textual entailment in open-domain question answering. In: Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL. Association for Computational Linguistics (2006)
Iftene, A., Balahur, A.: Answer validation on English and Romanian languages. In: Peters, C., Deselaers, T., Ferro, N., Gonzalo, J., Jones, G.J.F., Kurimo, M., Mandl, T., Peñas, A., Petras, V. (eds.) CLEF 2008. LNCS, vol. 5706, pp. 448–451. Springer, Heidelberg (2009)
Inkpen, D., Kipp, D., Nastase, V.: Machine learning experiments for textual entailment. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Katrenko, S., Adriaans, P.: Using maximal embedded syntactic subtrees for textual entailment recognition. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Landis, J.R., Koch, G.G.: The measurements of observer agreement for categorical data. Biometrics 33, 159–174 (1997)
Nicholson, J., Stokes, N., Baldwin, T.: Detecting entailment using an extended implementation of the basic elements overlap metric. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Nielsen, R.D., Ward, W., Martin, J.H.: Classification errors in a domain-independent assessment system. In: Proceedings of the Third Workshop on Innovative Use of Natural Language Processing for Building Educational Applications, at the Forty-Sixth annual meeting of the Association for Computational Linguistics. ACL (2008)
Schilder, F., McInnes, B.T.: Word and tree-based similarities for textual entailment. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Vanderwende, L., Dolan, W.B.: What syntax can contribute in the entailment task. In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 205–216. Springer, Heidelberg (2006)
Voorhees, E.M., Harman, D.: Overview of the seventh text retrieval conference. In: Proceedings of the Seventh Text REtrieval Conference (TREC-7). NIST Special Publication (1999)
Zanzotto, F.M., Moschitti, A., Pennacchiotti, M., Pazienza, M.T.: Learning textual entailment from examples. In: The Second PASCAL Challenges Workshop on Recognizing Textual Entailment (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Bar-Haim, R., Dagan, I., Szpektor, I. (2014). Benchmarking Applied Semantic Inference: The PASCAL Recognising Textual Entailment Challenges. In: Dershowitz, N., Nissan, E. (eds) Language, Culture, Computation. Computing - Theory and Technology. Lecture Notes in Computer Science, vol 8001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45321-2_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-45321-2_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45320-5
Online ISBN: 978-3-642-45321-2
eBook Packages: Computer ScienceComputer Science (R0)