Skip to main content

A Knowledge-Based Approach to Initial Population Generation in Evolutionary Algorithms: Application to the Protein Structure Prediction Problem

  • Chapter
Language, Culture, Computation. Computing - Theory and Technology

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8001))

Abstract

In this study we introduce a new approach to generate the initial population of an Evolutionary Algorithm (EA), based on problem-specific knowledge. We discuss the key ingredients (knowledge and diversity) necessary to generate a good diverse initial random population, with particular application to the protein structure prediction problem. Two main components of our Initial Population Generation (IPG) algorithm are described: (a) one provides the bio-chemical problem-specific knowledge (Molecular Dynamics (MD) and Normal Mode Analysis (NMA)); (b) the second one is an algorithm which ensures population diversity by using the complete graph of the generated bio-molecular conformations. Results show that IPG is a promising algorithm for the creation of good diversity initial populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Michalewicz, Z., Fogel, D.B.: How to solve it: Modern Heuristics. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

  3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  4. Back, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation 1: Basic Algorithms and Operators. IOP Publishing Ltd., Bristol (2000)

    MATH  Google Scholar 

  5. Back, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation 2: Advanced Algorithms and Operators. IOP Publishing Ltd., Bristol (2000)

    MATH  Google Scholar 

  6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publ. Co., USA (1989)

    MATH  Google Scholar 

  7. Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  8. De Jong, K.A.: Evolutionary Computation – A Unified Approach. The MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  9. Fogel, D.B.: Evolutionary Computation – Toward a New Philosophy of Machine Intelligence. IEEE Press, Piscataway (2006)

    MATH  Google Scholar 

  10. Yao, X., Xu, Y.: Recent Advances in Evolutionary Computation. J. Comput. Sci. & Technol. 21, 1–18 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spears, W.M.: Evolutionary Algorithms – The Role of Mutation and Recombination. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  12. Maaranen, H., Miettinen, K., Penttinen, A.: On initial populations of a genetic algorithm for continuous optimization problems. J. Glob. Optim. 37, 405–436 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hill, R.R.: A Monte Carlo Study of Genetic Algorithm Initial Population Generation Methods. In: Proc. of the 31st Winter Simulation Conference, pp. 543–547 (1999)

    Google Scholar 

  14. Rahnamayan, S., Tzihoosh, H.R., Salama, M.M.A.: A novel population initialization method for accelerating evolutionary algorithms. Computers and Mathematics with Applications 53, 1605–1614 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Morrison, R.W.: Dispersion-based Population Initialization. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1210–1221. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Ursem, R.K.: Diversity-guided evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 462–471. Springer, Heidelberg (2002)

    Google Scholar 

  17. Smith, A.E., Coit, D.W.: Penalty Functions. In: [5], pp. 41–48 (2000)

    Google Scholar 

  18. Leach, A.: Molecular Modelling - Principles and Applications, 2nd edn. Prentice-Hall, Pearson Education Ltd., Essex (2001)

    Google Scholar 

  19. Schlick, T.: Molecular Modeling and Simulation – An Interdisciplinary Guide. Springer, New York (2002)

    Book  MATH  Google Scholar 

  20. Floudas, C.A., Klepeis, J.L., Pardalos, P.M.: Global Optimization Approaches in Protein Folding and Peptide Docking. In: Proc. of DYCOPS-5, pp. 167–178 (1998)

    Google Scholar 

  21. Straub, J.E.: Optimization Techniques with Applications to Proteins. In: Elber, R. (ed.) New Developments in Theoretical Studies of Proteins, pp. 137–196. World Scientific Publ., Singapore (1996)

    Chapter  Google Scholar 

  22. Prentiss, M.C., Hardin, C., Eastwood, M.P., Zong, C., Wolynes, P.G.: Protein Structure Prediction: The Next Generation. J. Chem. Theory Comput. 2, 705–716 (2006)

    Article  Google Scholar 

  23. Ponder, J.W., Case, D.A.: Force Fields for Protein Simulation. Adv. Protein Chem. 66, 27–85 (2003)

    Article  Google Scholar 

  24. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    MATH  Google Scholar 

  25. Matthey, T., Cickovski, T., Hampton, S.S., Ko, A., Ma, Q., Nyerges, M., Raeder, T., Slabach, T.: Izaguirre, PROTOMOL: An object-oriented framework for prototyping novel algorithms for molecular dynamics. ACM Trans. Math. Softw. 30(3), 237–265 (2004)

    Article  MATH  Google Scholar 

  26. Carter, A.H.: Classical and Statistical Thermodynamics. Printice Hall, Inc., New Jersey (2001)

    Google Scholar 

  27. Ponder, J.W.: TINKER - Software Tools for Molecular Design. Version 4.1, Washington University School of Medicine, St. Louis, MO (2003)

    Google Scholar 

  28. Brooks, B., Karplus, M.: Normal modes for specific motions of macromolecules: Application to the hinge-bending mode of lysozyme. Proc. Nat. Acad. Sci. USA 80, 6571–6575 (1983)

    Article  Google Scholar 

  29. Goldstein, H.: Classical Mechanics. Addison Wesley, Reading (1980)

    MATH  Google Scholar 

  30. Elber, R., Karplus, M.: Multiple conformation states of proteins: A molecular dynamics analysis of myoglobin. Science 235, 318–321 (1987)

    Article  Google Scholar 

  31. Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417–429 (1998)

    Article  Google Scholar 

  32. Wriggers, W., Schulten, K.: Protein domain movements: detection of rigid domains and visualization of hinges in comparisons of atomic coordinates. Proteins 29(1), 1–14 (1997)

    Article  Google Scholar 

  33. Delarue, M., Dumas, P.: On the use of low-frequency normal modes to enforce collective movements in refining molecular structural models. PNAS 101(18), 6957–6972 (2004)

    Article  Google Scholar 

  34. Lindahl, E., Azuara, C., Koehl, Delarue, M.: NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res. 34, w52–w56 (2006)

    Google Scholar 

  35. Doruker, P., Bahar, I., Baysal, C., Erman, B.: Collective deformations in proteins determined by a mode analysis of molecular dynamics trajectories. Polymer 43, 431–439 (2002)

    Article  Google Scholar 

  36. Diestel, R.: Graph Theory – Electronic Edition 2005. Springer, Heidelberg (2005)

    Google Scholar 

  37. Pfaltz, J.L.: Computer Data Structures. McGraw-Hill Inc., New York (1977)

    MATH  Google Scholar 

  38. Goldstein, M., Fredj, E., Gerber, R.B.: A New Hybrid Algorithm for Finding the Lowest Minima of Potential Surfaces: Approach and Application to Peptides. J. Comput. Chem. 32, 1785–1800 (2011)

    Article  Google Scholar 

  39. Yang, C.-H., Brown, J.N., Kopple, K.D.: Crystal Structure and Solution Studies of the Molecular Conformation of the Cyclic Hexaqpeptide cyclo-(Gly-L-His-Gly-L-Ala-L-Tyr-Gly). J. Am. Chem. Soc. 103, 1715–1719 (1981)

    Article  Google Scholar 

  40. Rayan, A., Senderowitz, H., Goldblum, A.: Exploring the conformational space of cyclic peptides by a stochastic search method. Journal of Molecular Graphics and Modelling 22, 319–333 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fredj, E., Goldstein, M. (2014). A Knowledge-Based Approach to Initial Population Generation in Evolutionary Algorithms: Application to the Protein Structure Prediction Problem. In: Dershowitz, N., Nissan, E. (eds) Language, Culture, Computation. Computing - Theory and Technology. Lecture Notes in Computer Science, vol 8001. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45321-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45321-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45320-5

  • Online ISBN: 978-3-642-45321-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics