Skip to main content

Edge-disjoint Decompositions of Complete Multipartite Graphs into Gregarious Long Cycles

  • Conference paper
Computational Geometry and Graphs (TJJCCGG 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8296))

Included in the following conference series:

  • 564 Accesses

Abstract

The notion of gregarious cycles in complete multipartite graphs was introduced by Billington and Hoffman in 2003 and was modified later by Billington, Hoffman, and Rodger and by Billington, Smith, and Hoffman.

In this paper, we propose a new definition of gregarious cycles in complete multipartite graphs which generalizes all of the three definitions. With our definition, we can consider gregarious cycles of long length in complete multipartite graphs, and we show some results on the existence of edge-disjoint decompositions of complete multipartite graphs into gregarious long cycles.

This research was supported for two years by Pusan National University Research Grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alspach, B., Gavlas, H.: Cycle decompositions of K n and K n  − I. Journal of Combinatorial Theory, Series B 81, 77–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Billington, E.J., Hoffman, D.G.: Decomposition of complete tripartite graphs into gregarious 4-cycles. Discrete Mathematics 261, 87–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billington, E.J., Hoffman, D.G.: Equipartite and almost-equipartite gregarious 4-cycle systems. Discrete Mathematics 308, 696–714 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billington, E.J., Hoffman, D.G., Rodger, C.A.: Resolvable gregarious cycle decompositions of complete equipartite graphs. Discrete Mathematics 308, 2844–2853 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Billington, E.J., Smith, B.R., Hoffman, D.G.: Equipartite gregarious 6- and 8-cycle systems. Discrete Mathematics 307, 1659–1667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cho, J.R.: A note on decomposition of complete equipartite graphs into gregarious 6-cycles. Bulletin of the Korean Mathematical Society 44, 709–719 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cho, J.R., Gould, R.J.: Decompositions of complete multipartite graphs into gregarious 6-cycles using complete differences. Journal of the Korean Mathematical Society 45, 1623–1634 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kim, E.K., Cho, Y.M., Cho, J.R.: A difference set method for circulant decompositions of complete partite graphs into gregarious 4-cycles. East Asian Mathematical Journal 26, 655–670 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Šajna, M.: On decomposiing K n  − I into cycles of a fixed odd length. Descrete Mathematics 244, 435–444 (2002)

    Article  Google Scholar 

  10. Šajna, M.: Cycle decompositions III: complete graphs and fixed length cycles. Journal of Combinatorial Designs 10, 27–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Smith, B.R.: Equipartite gregarious 5-cycle systems and other results. Graphs and Combinatorics 23, 691–711 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Smith, B.R.: Some gregarious cycle decompositions of complete equipartite graphs. The Electronic Journal of Combinatorics 16(1), Research Paper 135, 17 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cho, J.R., Park, J., Sano, Y. (2013). Edge-disjoint Decompositions of Complete Multipartite Graphs into Gregarious Long Cycles. In: Akiyama, J., Kano, M., Sakai, T. (eds) Computational Geometry and Graphs. TJJCCGG 2012. Lecture Notes in Computer Science, vol 8296. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45281-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45281-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45280-2

  • Online ISBN: 978-3-642-45281-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics