Advertisement

Text Document Cluster Analysis Through Visualization of 3D Projections

Chapter
Part of the Studies in Big Data book series (SBD, volume 3)

Abstract

Clustering has been used as a tool for understanding the content of large text document sets. As the volume of stored data has increased, so has the need for tools to understand output from clustering algorithms. We developed a new visual interface to meet this demand. Our interface helps non-technical users understand documents and clusters in massive databases (e.g., document content, cluster sizes, distances between clusters, similarities of documents within clusters, extent of cluster overlaps) and evaluate the quality of output from different clustering algorithms. When a user inputs a keyword query describing his/her interests, our system retrieves and displays documents and clusters in three dimensions. More specifically, given a set of documents modeled as vectors in an orthogonal coordinate system and a query, our system finds three orthogonal coordinate axes that are most relevant to generate a display (or users may choose any three orthogonal axes). We conducted implementation studies to demonstrate the value of our system with an artificial data set and a de facto benchmark news article dataset from the United States NIST Text REtrieval Competitions (TREC).

Keywords

Text mining Clustering Visualization Human-computer interaction (HCI) Graphical user interface (GUI) 

Notes

Acknowledgments

This work was conducted at IBM Research-Tokyo. The authors would like to acknowledge many helpful conversations with their colleagues. Our special thanks go out to Arquimedes Canedo, Yun Zhang, Steven Gardiner and Mike Berry for helpful suggestions on our manuscript and to Koichi Takeda and Fumio Ando for their thoughtful management and support of our work.

References

  1. 1.
    Achlioptas, D.: Database-friendly random projections. In: Proceeding of the ACM PODS, pp. 274–281. Santa Barbara, CA (2001)Google Scholar
  2. 2.
    Ankerst, M., Keim, D., Kriegel, H.-P.: Circle segments: a technique for visually exploring large multidimensional data sets. In: Proceeding of the IEEE Visualization, pp. 274–281. San Francisco, CA (1996)Google Scholar
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B. (eds.): Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  4. 4.
    Banerjee, A., Krumpelman, C., Basu, S., Mooney, R., Ghosh, J.: Model-based overlapping clustering. In: Proceeding of the ACM KDD, pp. 532–537. Chicago, IL (2005)Google Scholar
  5. 5.
    Battle, A., Segal, E., Koller, D.: Probabilistic discovery of overlapping cellular processes and their regulation using gene expression data. In: Proceeding of the ACM RECOMB, pp. 167–176. San Diego, CA (2004)Google Scholar
  6. 6.
    Belew, R.: Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW. Cambridge University Press, Cambridge (2008)Google Scholar
  7. 7.
    Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, NY (1981)CrossRefMATHGoogle Scholar
  8. 8.
    Blum, K., Ruhe, A.: Information retrieval using a Krylov subspace method. SIAM J. Matrix Anal. Appl. 26, 566–582 (2005)CrossRefGoogle Scholar
  9. 9.
    Deerwester, S., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)CrossRefGoogle Scholar
  10. 10.
    Dhillon, I., Modha, D., Spangler, W.: Visualizing class structure of multidimensional data. In: Proceeding of the Symposium on Interface: Computer Science and Statistics. http://www.almaden.ibm.com/cs/people/dmodha/ (1998). Accessed 31 March 2011
  11. 11.
    Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3, 32–57 (1973)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Everitt, B., Landau, S., Leese, N.: Cluster Analysis, 4th edn. Oxford University Press, Oxford (2001)Google Scholar
  13. 13.
    Faloutsos, C., Lin, K.-I.: FastMap: a fast algorithm for indexing, data-mining and visualization of multimedia datasets. In: Proceeding of the ACM SIGMOD, pp. 163–174. San Jose, CA (1995)Google Scholar
  14. 14.
    Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comp. c-23(9), 881–890 (1974)Google Scholar
  15. 15.
    Futschik, M.E., Carlisle, B.: Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3(4), 965–988 (2005)CrossRefGoogle Scholar
  16. 16.
    Golub, G., VanLoan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)Google Scholar
  17. 17.
    Hinnenburg, A., Keim, D., Wawryniuk, M.: HD-eye: visual mining of high dimensional data. IEEE Comput. Graph. Appl. 19(5), 23–31 (1999)Google Scholar
  18. 18.
    Huang, Z., Lin, T.: A visual method of cluster validation using Fastmap. In: Terano, T., Liu, H., Chen, A. (eds.) Knowledge Discovery and Data Mining, pp. 153–164. Current Issues and New Applications, Springer, Berlin (2000)Google Scholar
  19. 19.
    Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1(2), 69–92 (1985)CrossRefMATHGoogle Scholar
  20. 20.
    Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (2000)CrossRefGoogle Scholar
  21. 21.
    Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, Berlin (2002)Google Scholar
  22. 22.
    Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In: Proceeding of the ACM KDD, pp. 107–116. San Francisco, CA (2001)Google Scholar
  23. 23.
    Kobayashi, M., Aono, M.: Vector space models for search and cluster mining. In: Berry, M. (ed.) Survey of Text Mining: Clustering, Classification and Retrieval, pp. 103–122. Springer, NY (2004)CrossRefGoogle Scholar
  24. 24.
    Kobayashi, M., Aono, M.: Exploring overlapping clusters using dynamic re-scaling and sampling. Knowl. Inf. Syst. 10(3), 295–313 (2006)CrossRefGoogle Scholar
  25. 25.
    Kobayashi, M., Aono, M.: Vector space models for search and cluster mining. In: Berry, M., Castellanos, M. (eds.) Survey of Text Mining, 2nd edn., pp. 103–122. Springer, Berlin (2008)Google Scholar
  26. 26.
    Kobayashi, M., Aono, M., Samukawa, H., Takeuchi, H.: Matrix computations for knowledge mining and management. J. Comput. Appl. Math. 149, 119–129 (2002)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kriegel, H.-P., Kroeger, P., Zimek, A.: Clustering high dimensional data. ACM Trans. Knowl. Discov. Data 3(1), 1–58 (2009)CrossRefGoogle Scholar
  28. 28.
    Krushal, J.: Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new ‘index of condensation’. In: Milton, R., Nelder, J. (eds.) Stat. Comput., pp. 427–440. Academic Press, NY (1969)Google Scholar
  29. 29.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceeding of the 5th Berkeley Symposium on Mathematical Statistics and Probability 1, pp. 281–297, University of California Press (1967)Google Scholar
  30. 30.
    Mardia, K., Kent, J., Bibby, J.: Multivariate Analysis. Academic Press, NY (1979)MATHGoogle Scholar
  31. 31.
    Nason, G.: Design and choice of projection indices. Dissertation, University of Bath, UK (1992)Google Scholar
  32. 32.
    Park, H., Jeon, M., Rosen, B.J.: Lower dimensional representation of text data based on centroids and least squares. BIT 43(2), 1–22 (2003)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572. http://stat.smmu.edu.cn/history/pearson1901.pdf (1901). Accessed 25 Nov 2011
  34. 34.
    Popescul, A., Ungar, L.: Automatic labeling of document clusters. http://www.cis.upenn.edu/popescul/Publications/popescul001labeling.pdf (2000). Accessed 31 March 2011
  35. 35.
    Rasmussen, E.: Clustering algorithms. In: Frakes, E., Baeza-Yates, R. (eds.) Information Retrieval, pp. 419–442. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  36. 36.
    Rohrer, R., Silbert, J., Ebert, D.: A shape-based visual interface for text retrieval. IEEE Comput. Graph. Appl. 19(5), 40–46 (1990)CrossRefGoogle Scholar
  37. 37.
    Sahami, M., Hearst, M., Saund, E.: Applying the multiple cause mixture model to text categorization. In: Proceeding of the ICML, pp. 435–443. Baru, Italy (1996)Google Scholar
  38. 38.
    Salton, G. (ed.): The Smart Retrieval System. Prentice Hall, Englewood Cliffs (1971)Google Scholar
  39. 39.
    Sebrechts, M., et al.: Visualization of search results; a comparative evaluation of text, 2D, and 3D interfaces. In: Proceeding of the ACM SIGIR, pp. 3–10. Berkeley, CA (1999)Google Scholar
  40. 40.
    Segal, E., Battle, A., Koller, D.: Decomposing gene expression into cellular processes. In: Proceeding of the Pacific Symposium on Biocomputing, Lihue, HI, vol. 8, pp. 89–100. http://helix-web.stanford.edu/psb03/segal.pdf (2003). Accessed 25 Nov 2011
  41. 41.
    Seo, J., Shneiderman, B.: Interactively exploring hierarchical clustering results. IEEE Comput. 35(7), 80–86 (2002)Google Scholar
  42. 42.
    Spence, R.: Information Visualization, 2nd edn. Prentice-Hall, Englewood Cliffs (2007)Google Scholar
  43. 43.
    Ware, C.: Information Visualization, 2nd edn. Morgan Kaufmann, Burlington (2004)Google Scholar
  44. 44.
    Wong, P.: Visual data mining. IEEE Comput. Graph. Appl. 19(5), 20–21 (1999)CrossRefGoogle Scholar
  45. 45.
    Zhao, Y., Karypis, G.: Soft clustering criterion functions for partitional document clustering. In: Proceeding of the ACM CIKM, pp. 246–247. Washington DC (2004)Google Scholar
  46. 46.
    Zhukov, L., Gleich, D.: Decomposing gene expression into cellular processes. http://www.stanford.edu/dgleich/publications/soft-clustering-pca-ica.pdf (2003). Accessed 31 March 2011

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer Science and Engineering Toyohashi University of TechnologyToyohashi-shiJapan
  2. 2.IBM Research-TokyoTokyoJapan

Personalised recommendations