Skip to main content

High-order Masking by Using Coding Theory and Its Application to AES

  • Conference paper
Cryptography and Coding (IMACC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8308))

Included in the following conference series:

Abstract

To guarantee that some implementation of a cryptographic scheme is secure against side channel analysis, one needs to formally prove its leakage resilience. A relatively recent trend is to apply methods pertaining to the field of Multi-Party Computation: in particular this means applying secret sharing techniques to design masking countermeasures. It is known besides that there is a strong connection between secret sharing schemes and error-correcting codes, namely every linear code gives rise to a linear secret sharing scheme. However, the schemes mostly used in practice are the so-called Boolean masking and Shamir’s secret sharing scheme and it is widely thought that they are the most adapted to masking techniques because they correspond to MDS codes that are in some sense optimal. We propose alternative masking techniques that rely on non-MDS linear codes: these codes are non-binary but have an underlying binary structure which is that of a self-orthogonal binary code. Their being non-MDS is compensated by the fact that the distributed multiplication procedure is more efficient than with MDS codes due to an efficient encoding process and that the distributed computation of squares comes at almost no cost. In protecting AES against high-order side channel analysis, this approach is more efficient than methods using Shamir’s secret sharing scheme and competitive with Boolean masking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and Practice of a Leakage Resilient Masking Scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Blömer, J., Guajardo, J., Krummel, V.: Provably Secure Masking of AES. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems For Non-Cryptographic Fault-Tolerant Distributed Computation. In: Symposium on Theory of Computing, pp. 1–10 (1988)

    Google Scholar 

  4. Chen, H., Cramer, R.: Algebraic Geometric Secret Sharing Schemes and Secure Multi-Party Computations over Small Fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Chaum, D., Crépeau, C., Damgard, I.: Multiparty Unconditionally Secure Protocols. In: Symposium on Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  6. Chen, H., Cramer, R., Goldwasser, S., de Haan, R., Vaikuntanathan, V.: Secure Computation from Random Error Correcting Codes. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 291–310. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Cramer, R., Daza, V., Gracia, I., Urroz, J.J., Leander, G., Martí-Farré, J., Padró, C.: On Codes, Matroids, and Secure Multiparty Computation from Linear Secret-Sharing Schemes. IEEE Transactions on Information Theory 54(6), 2644–2657 (2008)

    Article  MATH  Google Scholar 

  8. Cramer, R., Damgård, I.B., Maurer, U.M.: General Secure Multi-party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Carlet, C., Guilley, S.: Side-channel indistinguishability. In: HASP 2013 Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy. ACM, New York (2013)

    Google Scholar 

  10. Carlet, C., Gaborit, P., Kim, J.-L., Solé, P.: A New Class of Codes for Boolean Masking of Cryptographic Computations. IEEE Transactions on Information Theory 58(9), 6000–6011 (2012)

    Article  Google Scholar 

  11. Coron, J.-S., Prouff, E., Roche, T.: On the Use of Shamir’s Secret Sharing against Side-Channel Analysis. In: Mangard, S. (ed.) CARDIS 2012. LNCS, vol. 7771, pp. 77–90. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-Order Side Channel Security and Mask Refreshing. In: Fast Software Encryption – FSE 2013 (2013)

    Google Scholar 

  13. Conway, J.H., Sloane, N.J.A.: A new upper bound on the minimal distance of self-dual codes. IEEE Transactions on Information Theory 36(6), 1319–1333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dziembowski, S., Faust, S.: Leakage-Resilient Circuits without Computational Assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  15. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer (2002)

    Google Scholar 

  16. FIPS PUB 197. Advanced Encryption Standard. National Institute of Standards and Technology (November 2001)

    Google Scholar 

  17. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Goubin, L., Martinelli, A.: Protecting AES with Shamir’s Secret Sharing Scheme. In: Preneel, Takagi (eds.) [PT11], pp. 79–94

    Google Scholar 

  19. Gaborit, P., Otmani, A.: Experimental Constructions Of Self-Dual Codes. Finite Fields and Their Applications-Elsevier (July 2003)

    Google Scholar 

  20. Gennaro, R., Rabin, M., Rabin, T.: Simplifed vss and fact-track multiparty computations with applications to threshold cryptography. In: Symposium on Principles of Distributed Computing, pp. 101–111 (1998)

    Google Scholar 

  21. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Joye, M., Paillier, P., Schoenmakers, B.: On Second-order Differential Power Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 293–308. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Kim, H., Hong, S., Lim, J.: A Fast and Provably Secure Higher-Order Masking of AES S-Box. In: Preneel, Takagi (eds.) [PT11], pp. 95–107

    Google Scholar 

  24. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  25. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)

    Google Scholar 

  26. Massey, J.: Minimal Codewords and Secret Sharing. In: Sixth Joint Swedish-Russian Workshop on Information Theory, pp. 246–249 (1993)

    Google Scholar 

  27. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resistant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  28. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-holland Publishing Company (1978)

    Google Scholar 

  29. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis Resistant Description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  30. Prouff, E., Roche, T.: Attack on a Higher-Order Masking of the AES Based on Homographic Functions. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 262–281. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  31. Prouff, E., Roche, T.: Higher-Order Glitches Free Implementation of the AES Using Secure Multi-party Computation Protocols. In: Preneel, Takagi (eds.) [PT11], pp. 63–78

    Google Scholar 

  32. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  33. Rivain, M., Prouff, E.: Provably Secure Higher-Order Masking of AES. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  34. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Trichina, E., DeSeta, D., Germani, L.: Simplified Adaptive Multiplicative Masking for AES. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castagnos, G., Renner, S., Zémor, G. (2013). High-order Masking by Using Coding Theory and Its Application to AES. In: Stam, M. (eds) Cryptography and Coding. IMACC 2013. Lecture Notes in Computer Science, vol 8308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45239-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45239-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45238-3

  • Online ISBN: 978-3-642-45239-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics