Skip to main content

Applications of Cellulose Acetate Nanofiber Mats

  • Chapter
  • First Online:
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

Electrospinning is an efficient process for fabrication of polymeric ultrafine fibers with diameters ranging from sub-micrometer to nanometer. It involves the application of a strong electric field across a conductive capillary attaching to a polymer liquid-containing reservoir and a collector. The obtained ultrafine fibers exhibit several interesting characteristics, e.g., high surface area to mass or volume ratio, high porosity, vast possibilities for surface functionalization, etc. These unique characteristics make them used in various applications such as biomedical, pharmaceutical, and industrial applications, etc. Cellulose acetate, the acetate ester of cellulose, has been widely used as fibers. Recently, the electrospinning of cellulose acetate has been attracted due to its good thermal stability, chemical resistance, biocompatibility, biodegradability, etc. These properties render it suitable for use in various applications including tissue engineering, drug delivery system, wound dressing, separation membrane, etc. This chapter covers research related to electrospinning of cellulose acetate and the potential applications of cellulose acetate fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Formhals A (1934) Process and apparatus for preparing artificial threads. US Patent 1975504

    Google Scholar 

  2. Doshi J, Reneker DH (1995) Electrospinning process and applications of electrospun fibers. J Electrostat 35:151

    Article  Google Scholar 

  3. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216

    Article  ADS  Google Scholar 

  4. Supaphol P, Suwantong O, Sangsanoh P, Neamnark A (2011) Electrospinning in drug delivery. In: Reisner DE (ed) Bionanotechnology II: global prospects. Boca Raton, CRC Press, p 455

    Chapter  Google Scholar 

  5. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89

    Article  ADS  Google Scholar 

  6. Greiner A, Wendorff JH (2007) Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew Chem 46:5670

    Article  Google Scholar 

  7. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D (2007) Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 27:504

    Article  Google Scholar 

  8. Sill TJ, von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29:1989

    Article  Google Scholar 

  9. Baumgarten P (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36:71

    Article  Google Scholar 

  10. Hayati I, Bailey AI, Tadros TF (1987) Investigations into the mechanisms of electrohydrodynamic spraying of liquids: Effect of electric-field and the environment on pendant drops and factors affecting the formation of stable jets and atomization. J Colloid Interface Sci 117:205

    Article  Google Scholar 

  11. Deitzel JM, Kleinmeyer J, Harris D, Tan NCB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261

    Article  Google Scholar 

  12. Meechaisue C, Dubin R, Supaphol P, Hoven VP, Kohn J (2006) Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material. J Biomat Sci Polym E 17:1039

    Article  Google Scholar 

  13. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 22:8456

    Article  ADS  Google Scholar 

  14. Deitzel JM, Kleinmeyer J, Hirvonen JK, Beck TNC (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42:8163

    Article  Google Scholar 

  15. Jaeger R, Bergshoef MM, Batlle CMI, Schonherr H, Vancso GJ (1998) Electrospinning of ultra-thin polymer fibers. Macromol Symp 127:141

    Article  Google Scholar 

  16. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18:1027

    Article  Google Scholar 

  17. Khil M-S, Cha D-I, Kim H-Y, Kim I-S, Bhattarai N (2003) Electrospun nanofibrous polyurethane membrane as wound dressing. J Biomed Mater Res A 67:675

    Article  Google Scholar 

  18. Kim K, Luu YK, Chang C, Fang DF, Hsiao BS, Chu B, Hadjiargyrou M (2004) Incorporation and controlled release of a hydrophilic antibiotic using poly(lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J Control Release 9:47

    Article  Google Scholar 

  19. Ma Z, Kotaki M, Inai R, Ramakrishna S (2005) Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng 11:101

    Article  Google Scholar 

  20. Ma Z, Kotaki M, Ramakrishna S (2006) Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel afffinity membrane. J Membrane Sci 272:179

    Article  Google Scholar 

  21. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M (2003) Development of nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release 89:341

    Article  Google Scholar 

  22. Wang Y, Hsieh Y-L (2004) Enzyme immobilization to ultra-fine cellulose fibers via amphiphilic polyethylene glycol spacers. J Polym Sci Pol Chem 42:4289

    Article  Google Scholar 

  23. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S (2005) Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606

    Article  Google Scholar 

  24. Wu L, Yuan X, Sheng J (2005) Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. J Membrane Sci 250:167

    Article  Google Scholar 

  25. Mark HF, Bikales NM, Overberger CG, Menges G (1985) Encyclopedia of polymer science and engineering. Wiley-Interscience, New York

    Google Scholar 

  26. Lu EX, Jiang ZQ, Zhang QZ, Jiang XG (2003) A water-insoluble drug monolithic osmotic tablet system utilizing gum arabic as an osmotic, suspending and expanding agent. J Control Release 92:375

    Article  Google Scholar 

  27. Makhija SN, Vavia PR (2003) Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine I. Cellulose acetate as a semipermeable membrane. J Control Release 89:5

    Article  Google Scholar 

  28. Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 67:387

    Article  Google Scholar 

  29. Tungprapa S, Jangchud I, Supaphol P (2007) Release characteristics of four model drugs from drug-loaded electrospun cellulose acetate fiber mats. Polymer 48:5030

    Article  Google Scholar 

  30. Suwantong O, Opanasopit P, Ruktanonchai U, Supaphol P (2007) Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance. Polymer 48:7546

    Article  Google Scholar 

  31. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430

    Article  Google Scholar 

  32. Chen L, Bromberg L, Hatton TA, Rutledge GC (2008) Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide. Polymer 49:1266

    Article  Google Scholar 

  33. Suwantong O, Ruktanonchai U, Supaphol P (2008) Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside. Polymer 49:4239

    Article  Google Scholar 

  34. Kontogiannopoulos KN, Assimopoulou AN, Tsivintzelis I, Panayiotou C, Papageorgiou VP (2011) Electrospun fiber mats containing shikonin and derivatives with potential biomedical applications. Int J Pharm 409:216

    Article  Google Scholar 

  35. Gouma P, Xue R, Goldbeck CP, Perrotta P, Balázsi C (2012) Nano-hydroxyapatite-Cellulose acetate composites for growing of bone cells. Mater Sci Eng C 32:607

    Article  Google Scholar 

  36. Liu H, Hsieh YL (2002) Ultra-fine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Pol Phys 40:2119

    Article  Google Scholar 

  37. Son WK, Youk JH, Lee TS, Park YH (2004) Electrospinning of ultrafine cellulose acetate fibers: Studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. Polym Sci Pol Phys 42:5

    Article  Google Scholar 

  38. Ding B, Kimura E, Sato T, Fujita S, Shiratori S (2004) Fabrication of blend biodegradable nanofibrous nonwoven mats via multi-jet electrospinning. Polymer 45:1895

    Article  Google Scholar 

  39. Tungprapa S, Puangparn T, Weerasombut M, Jangchud I, Fakum P, Semongkhol S, Meechaisue C, Supaphol P (2007) Electrospun cellulose acetate fibers: effect of solvent system on morphology and fiber diameter. Cellulose 14:563

    Article  Google Scholar 

  40. Zhang L, Hsieh Y-L (2008) Ultra-fine cellulose acetate/poly(ethylene oxide) biocomponent fibers. Carbohydr Polym 71:196

    Article  Google Scholar 

  41. Han SO, Youk JH, Min KD, Kang YO, Park WH (2008) Electrospinning of cellulose acetate nanofibers using a mixed solvent of acetic acid/water: Effects of solvent composition on the fiber diameter. Mater Lett 62:759

    Article  Google Scholar 

  42. Wongsasulak S, Patapeejumruswong M, Weiss J, Supaphol P (2010) Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends. J Food Eng 98:370

    Article  Google Scholar 

  43. Greish YE, Meetani MA, Al Matroushi EA, Al Shamsi B (2010) Effects of thermal and chemical treatments on the structural stability of cellulose acetate nanofibers. Carbohydr Polym 82:569

    Article  Google Scholar 

  44. Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133

    Article  Google Scholar 

  45. Baek W-I, Pant HR, Nam K-T, Nirmala R, Oh H-J, Kim I, Kim H-Y (2011) Effect of adhesive on the morphology and mechanical properties of electrospun fibrous mat of cellulose acetate. Carbohydr Res 346:1956

    Article  Google Scholar 

  46. Castillo-Ortega MM, Nájera-Luna A, Rodríguez-Félix DE, Encinas JC, Rodríguez-Félix F, Romero J, Herrera-Franco PJ (2011) Preparation, characterization and release of amoxicillin from cellulose acetate and poly(vinyl pyrrolidone) coaxial electrospun fibrous membranes. Mater Sci Eng C 31:1772

    Article  Google Scholar 

  47. Shuiping L, Lianjiang T, Weili H, Xiaoqiang L, Yanmo C (2010) Cellulose acetate nanofibers with photochromic property: Fabrication and characterization. Mater Lett 64:2427

    Article  Google Scholar 

  48. Mao X, Ding B, Wang M, Yin Y (2010) Self-assembly of phthalocyanine and polyacrylic acid composite multilayers on cellulose nanofibers. Carbohydr Polym 80:839

    Article  Google Scholar 

  49. Ma Z, Kotaki M, Ramakrishna S (2005) Electrospun cellulose nanofiber as affinity membrane. J Membrane Sci 265:115

    Article  Google Scholar 

  50. Ritcharoen W, Supaphol P, Pavasant P (2008) Development of polyelectrolyte multilayer-coated electrospun cellulose acetate fiber mat as composite membranes. Eur Polym J 44:3963

    Article  Google Scholar 

  51. Zhang L, Menkhaus TJ, Fong H (2008) Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. J Membrane Sci 319:176

    Article  Google Scholar 

  52. Sueyoshi Y, Fukushima C, Yoshikawa M (2010) Molecularly imprinted nanofiber membranes from cellulose acetate aimed for chiral separation. J Membrane Sci 357:90

    Article  Google Scholar 

  53. Tian Y, Wu M, Liu R, Li Y, Wang D, Tan J, Wu R, Huang Y (2011) Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Cabohydr Polym 83:743

    Article  Google Scholar 

  54. Huang X-J, Chen P-C, Huang F, Ou Y, Chen M-R, Xu Z-K (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95

    Article  Google Scholar 

  55. Anitha S, Brabu B, Thiruvadigal DJ, Gopalakrishnan C, Natarajan TS (2012) Optical, bactericidal and water repellent properties of electrospun nano-composite membranes of cellulose acetate and ZnO. Carbohydr Polym 87:1065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawan Suwantong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Suwantong, O., Supaphol, P. (2015). Applications of Cellulose Acetate Nanofiber Mats. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, HJ. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45232-1_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45232-1_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45231-4

  • Online ISBN: 978-3-642-45232-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics