Dispersion of Nanocellulose (NC) in Polypropylene (PP) and Polyethylene (PE) Matrix

  • Jitendra K. Pandey
  • Hyun Taek Lee
  • Hitoshi Takagi
  • S. H. Ahn
  • D. R. Saini
  • M. Misra


PP and PE are considered as environmental polluter mainly because of their greater resistance toward biological degradation in the environment upon disposal. Although this property contributes to their popularity for development of medical devices, still the repercussions of PP and PE litter create a serious threat for chocking of water ways, sewage pipes, etc. Since one of the main objectives to use NC as reinforcer for polymer matrixes is to develop environmentally friendly composites, it is essential to review the potential of NC-based PP and PE composites as environment friendly natural nanofiller. Highly crystalline nature, aspect ratio, well-established extraction processes, renewability, and sustainability of NC make it one of the best nanofillers to improve the material properties of different hydrophilic polymer. The mechanical performance of resulting hybrids is mainly governed by the proper dispersion of NC inside polymer. Because of their highly hydrophilic nature, it is always a challenge to mix NC with hydrophobic polymer matrixes such as PP and PE. The present chapter is aimed to discuss the dispersion of NC in PP and PE matrix and associated challenges with brief description of possible solutions and future direction.


Biodegradation Nano-cellulose Nano-composite Polyethylene [PE] Polypropylene [PP] 



Support from Brain Pool Korea is gratefully acknowledged.


  1. 1.
    Pandey JK, Raghunatha RK, Pratheep KA, Singh RP (2005) An overview on the degradability of polymer nanocomposites. Polymer degradation and stability. Polym Degrad Stabil 88(2):234–250CrossRefGoogle Scholar
  2. 2.
    Pandey JK, Misra M, Mohanty AK, Drzal LT, Palsingh R (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5(4):497–526CrossRefGoogle Scholar
  3. 3.
    Pandey JK, Takagi H, Saini DR, Nakagaito AN, Ahn SH (2012) An overview on the cellulose based conducting composites. Compos B: Eng 43(7):2822–2826CrossRefGoogle Scholar
  4. 4.
    Kolpak F, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9(2):273–278ADSCrossRefGoogle Scholar
  5. 5.
    Stipanovic AJ, Sarko A (1976) Packing analysis of carbohydrates and polysaccharides. Molecular and crystal structure of regenerated cellulose II. Macromolecules 9(5):851–857ADSCrossRefGoogle Scholar
  6. 6.
    de Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787CrossRefGoogle Scholar
  7. 7.
    Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRefGoogle Scholar
  8. 8.
    Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142(1):75–82CrossRefGoogle Scholar
  9. 9.
    Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842Google Scholar
  10. 10.
    Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRefGoogle Scholar
  11. 11.
    Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10(1–2):27–30Google Scholar
  12. 12.
    Gousse C, Chanzy H, Cerrada M, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45(5):1569–1575CrossRefGoogle Scholar
  13. 13.
    Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRefGoogle Scholar
  14. 14.
    Habibi Y, Goffin AL, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly (ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18(41):5002–5010CrossRefGoogle Scholar
  15. 15.
    Jonoobi M, Harun J, Mathew AP, Hussein MZB, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRefGoogle Scholar
  16. 16.
    Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6):1973–1978CrossRefGoogle Scholar
  17. 17.
    Pandey JK, Chu W, Kim C, Lee C, Ahn S (2009) Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos B: Eng 40(7):676–680CrossRefGoogle Scholar
  18. 18.
    Jonoobi M, Mathew AP, Abdi MM, Makinejad MD, Oksman K (2012) A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J Polym Environ 20(4):991–997CrossRefGoogle Scholar
  19. 19.
    Pandey JK, Lee S, Kim HJ, Takagi H, Lee C, Ahn SH (2012) Preparation and properties of cellulose-based nano composites of clay and polypropylene. J Appl Polym Sci 125(S1):E651–E660CrossRefGoogle Scholar
  20. 20.
    Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaillé JY (2005) New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5):2732–2739CrossRefGoogle Scholar
  21. 21.
    Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11):2521–2527CrossRefGoogle Scholar
  22. 22.
    Bahar E, Ucar N, Onen A, Wang Y, Oksüz M, Ayaz O, Ucar M, Demir A (2012) Thermal and mechanical properties of polypropylene nanocomposite materials reinforced with cellulose nano whiskers. J Appl Polym Sci 125(4):2882–2889CrossRefGoogle Scholar
  23. 23.
    Capadona JR, Van Den Berg O, Capadona LA, Schroeter M, Rowan SJ, Tyler DJ, Weder C (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nature Nanotechnol 2(12):765–769ADSCrossRefGoogle Scholar
  24. 24.
    Beck-Candanedo S, Roman M, Gray DG (2005) Biomacromolecules 6:1048CrossRefGoogle Scholar
  25. 25.
    Chuayjuljit S, Su-Uthai S, Tunwattanaseree C, Charuchinda S (2009) Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets. J Reinf Plast Comp 28:1245–1254CrossRefGoogle Scholar
  26. 26.
    Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod 32(3):627–633CrossRefGoogle Scholar
  27. 27.
    Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites. Part II: Properties evaluation Natacha Bitinis Elena Fortunati Raquel Verdejo Julien Bras Jose Maria Kenny Luigi Torre Miguel Angel López- Carbohydrate Polymers 2013, 96, 2,621–627Google Scholar
  28. 28.
    Samir MASA, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626CrossRefGoogle Scholar
  29. 29.
    Hassan ML, Bras J, Hassan EA, Fadel SM, Dufresne A (2012) Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. J Appl Polym Sci 125(Suppl 2):E10–E19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jitendra K. Pandey
    • 1
  • Hyun Taek Lee
    • 1
  • Hitoshi Takagi
    • 4
  • S. H. Ahn
    • 1
  • D. R. Saini
    • 3
  • M. Misra
    • 2
  1. 1.School of Mechanical & Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Department of Plant Agriculture, or, School of EngineeringUniversity of GuelphGuelphCanada
  3. 3.Department of Polymer Science and EngineeringNational Chemical LaboratoryPuneIndia
  4. 4.Institute of Technology and ScienceThe University of TokushimaTokushimaJapan

Personalised recommendations