Skip to main content

Preparation, Properties, and Processibility of Nanocomposites Based on Poly(ethylene-Co-Methyl Acrylate) and Multiwalled Carbon Nanotubes

  • Chapter
Handbook of Polymer Nanocomposites. Processing, Performance and Application

Abstract

In this chapter, the preparation, characterization, processibility, and properties of nanocomposites based on multiwall carbon nanotubes (MWNTs) and different commercial grades of poly(ethylene-co-methyl acrylate) (EMA) having a variable methyl acrylate (MA) content are covered. The results showed that melt blending after solution mixing offers a simple and effective means to fabricate EMA/MWNT nanocomposites. The mechanical electrical properties and thermal degradation characteristics of the nanocomposites improve with increase in wt% of MWNT loading. The states of dispersions of the unmodified MWNTs are found to be inferior with increasing MA content in the EMA matrix. Better dispersions of MWNTs in EMA matrix lead to increased crystallite size and increased temperature of crystallization. The capillary rheological parameters can be correlated with the developed morphology under steady shear conditions. The effects of MWNTs and MA content in EMA on thermal stability and degradation kinetics are also presented. The kinetic parameters of degradation can be correlated with the degree of conversion. A promising mechanism is proposed over a different range of temperatures of degradation. The significant improvements in the mechanical and electrical properties of the polymeric matrix are observed by the addition of commercially available functionalized (hydroxyl and carboxyl) MWNTs. However, the states of dispersion of the functionalized MWNTs are found to be inferior in EMA matrix having lower MA contents. The morphology and properties of EMA-/modified MWNT-based nanocomposites are also investigated by using the plasma exposed, γ-ray irradiated, and chemically modified MWNTs. The improvement of technical properties of the matrix has been found to be higher with the plasma-modified MWNTs among all. It is also found that the electrical conductivity and EMI shielding effectiveness depend heavily on the type of functional groups present on the surface of MWNTs and also on MA content in EMA. These EMA/MWNT nanocomposites have potential applications especially, as a semiconductive layer in nuclear power plant cables, as an EMI shielding materials or as reinforced functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1799

    Article  Google Scholar 

  2. Ando Y, Zhao X, Shimoyama H, Sakai G, Kaneto K (1999) Physical properties of multiwalled carbon nanotubes. Int J Inorg Mater 1:77–82

    Article  Google Scholar 

  3. Avouris P (2002) Molecular electronics with carbon nanotubes. Acc Chem Res 35:1026–1034

    Article  Google Scholar 

  4. Barrau S, Demont P, Perez E, Peigney A, Laurent C, Lacabanne C (2003) Effect of palmitic acid on the electrical conductivity of carbon nanotubes-epoxy resin composites. Macromolecules 36:9678–9680

    Article  ADS  Google Scholar 

  5. Barthelat F, Rabiei R (2011) Toughness amplification in natural composites. J Mech Phys Solids 59:829–840

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Basuli U, Chaki TK, Chattopadhyay S, Sabarwal S (2010) Thermal and mechanical properties of polymer-nanocomposites based on ethylene methyl acrylate and multiwalled carbon nanotube. Polym Compos 31:1168–1178

    Google Scholar 

  7. Basuli U, Chaki TK, Chattopadhyay S (2010) Influence of acrylate content on the properties of ethylene methyl acrylate-multi walled carbon nanotube composites. Adv Sci Lett 3:10–19

    Article  Google Scholar 

  8. Basuli U, Nah C (2012) Functionalizing multi-wall carbon nanotubes by plasma modification for the preparation of high performance ethylene methyl acrylate (EMA) nanocomposites. In: International conference and workshop on nanostructured ceramics and other nanomaterials (ICWNCN), 13–16 Mar 2012, New Delhi

    Google Scholar 

  9. Basuli U, Chaki TK, Setua DK, Chattopadhyay S (2011) A comprehensive examination on the thermal degradation of multi-walled carbon nanotubes-reinforced EMA nanocomposites. J Therm Anal Calorim 108:1223–1234

    Google Scholar 

  10. Basuli U, Chaki TK, Chattopadhyay S (2012) Rheological signatures of ethylene methyl acrylate- ed carbon nanotube nanocomposites. Polym Adv Technol 23:65–76

    Article  Google Scholar 

  11. Basuli U, Chaki TK, Nah C, Chattopadhyay S (2012) Rheological behaviors and electrical properties of nanocomposites based on poly(ethylene-co-methyl acrylate) and multi-walled carbon nanotubes. Adv Sci Lett 5:1–13

    Google Scholar 

  12. Basuli U, Chaki TK, Chattopadhyay S (2012) Mechanical, thermal and rheological behavior of ethylene methyl acrylate-MWNT nanocomposites. Polym Eng Sci 52:277–288

    Article  Google Scholar 

  13. Basuli U, Chattopadhyay S, Nah C, Chaki TK (2012) Electrical properties and electromagnetic interference shielding effectiveness of multi-walled carbon nanotubes-reinforced EMA nanocomposites. Polym Compos 33:897–903

    Article  Google Scholar 

  14. Basuli U, Chaki TK, Nah C, Chattopadhyay S (2012) Rheological behaviors and electrical properties of nanocomposites based on oply(ethylene-co-methyl acrylate) and multi-walled carbon nanotubes. Adv Sci Lett 17:27–39

    Article  Google Scholar 

  15. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  ADS  Google Scholar 

  16. Cheng Y, Zhou O (2003) Electron field emission from carbon nanotubes. C R Phys 4:1021–1033

    Article  ADS  Google Scholar 

  17. Das NC, Maiti S (2008) Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites. J Mater Sci 43:1920–1925

    Article  ADS  Google Scholar 

  18. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York/San Diego

    Google Scholar 

  19. Dresselhaus MS, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  20. George JJ, Bhowmick AK (2009) Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites. Nanoscale Res Lett 4:655–664

    Article  ADS  Google Scholar 

  21. Gururajan G, Froude V, Riutta S, Thomas A, Gao I, Samuels SL, Massouda DF, Weinberg M, Ogale AA (2008) Effect of poly (ethylene methyl acrylate) copolymer on thermal, morphological, and mechanical properties of polypropylene copolymer blown films. J Appl Polym Sci 107:2500–2508

    Article  Google Scholar 

  22. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  ADS  Google Scholar 

  23. Jeong KU, Lim JY, Lee JY, Kang SL, Nah C (2010) Polymer nanocomposites reinforced with multi-walled carbon nanotubes for semiconducting layers of high-voltage power cables. Polym Int 59:100–106

    Article  Google Scholar 

  24. Jia ZJ, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Structural materials: properties, microstructure and processing. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  25. Jin ZX, Pramoda KP, Xu GQ, Goh SH (2001) Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites. Chem Phys Lett 337:43–47

    Article  ADS  Google Scholar 

  26. Lamy de la Chapelle M, Stéphan C, Nguyen TP, Lefrant S, Journet C, Bernier P, Munoz E, Benito A, Maser WK, Martinez MT, de la Fuente GF, Guillard T, Flamant G, Alvarez L, Laplaze D (1999) Raman characterization of singlewalled carbon nanotubes and PMMA-nanotubes composites. Synth Met 103:2510–2512

    Article  Google Scholar 

  27. Lee KY, Kim KY (2008) 60Co γ-ray irradiation effect and degradation behaviors of a carbon nanotube and poly(ethylene-co-vinyl acetate) nanocomposites. Polym Degrad Stab 93:1290–1299

    Article  Google Scholar 

  28. Lee KY, Kim KY, Han WY, Park DH (2008) Thermal, electrical characteristics and morphology of poly(ethylene-co-ethyl acrylate)/CNT nanocomposites. IEEE Trans Dielectr Electr Insul 15:205–213

    Article  Google Scholar 

  29. Moly KA, Oommen Z, Bhagawan SS, Groeninckx G, Thomas S (2002) Melt rheology and morphology of LLDPE/EVA blends: effect of blend ratio, compatibilization, and dynamic crosslinking. J Appl Polym Sci 86:3210–3225

    Article  Google Scholar 

  30. Mongal N, Chakraborty D, Bhattacharyya R, Chaki TK, Bhattacharya P (2010) Characterization of electron beam irradiated ethylene methyl acrylate copolymer. Ind Eng Chem Res 49:7113–7120

    Article  Google Scholar 

  31. Mongal N, Chakraborty D, Bhattacharyya R, Chaki TK, Bhattacharya P (2010) Engineering properties of electron beam-crosslinked ethylene methyl acrylate copolymer. J Appl Polym Sci 117:75–83

    Google Scholar 

  32. Peeterbroeck S, Breugelmans L, Alexandre M, Nagy JB, Viville P, Lazzaroni R, Dubois P (2007) The influence of the matrix polarity on the morphology and properties of ethylene vinyl acetate copolymers-carbon nanotube nanocomposites. Compos Sci Technol 67:1659–1665

    Article  Google Scholar 

  33. Peeterbroeck S, Laoutid F, Swoboda B, Lopez-Cuesta JM, Moreau N, Nagy JB, Alexandre M, Dubois P (2007) How carbon nanotube crushing can improve flame retardant behaviour in polymer nanocomposites. Macromol Rapid Commun 28:260–264

    Article  Google Scholar 

  34. Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516

    Article  ADS  Google Scholar 

  35. Preston CML, Amarasinghe G, Hopewell JL, Shanksa RA, Mathys Z (2004) Evaluation of polar ethylene copolymers as fire retardant nanocomposite matrices. Polym Degrad Stab 84:533–544

    Article  Google Scholar 

  36. Robertson J (2004) Realistic applications of CNTs. Mater Today 7:46–52

    Article  Google Scholar 

  37. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169–182

    Article  Google Scholar 

  38. Shaffer MSP, Windel AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–941

    Article  Google Scholar 

  39. Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 2001(292):2462–2465

    Article  ADS  Google Scholar 

  40. Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475

    Article  Google Scholar 

  41. Volkmer D (1999) Von Biomineralien zu biomimetischen Materialien: Der weg ist das Zie. Chemie in unserer Zeit 33:6–19

    Article  Google Scholar 

  42. Wei D, Liu Y (2008) The intramolecular junctions of carbon nanotubes. Adv Mater 20:2815–2841

    Article  Google Scholar 

  43. Yang J, Hu J, Wang C, Qin Y, Guo Z (2004) Fabrication and characterization of soluble multi-walled carbon nanotubes reinforced P(MMA-co-EMA) composites. Macromol Mater Eng 289:828–832

    Article  Google Scholar 

  44. Jimenez GA, Jana SC (2007) Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing. Carbon 44:2079-2091

    Article  Google Scholar 

  45. Assouline E, Lustiger A, Barber AH, Cooper CA, Klein E, Wachtel E, Wagner HD (2003) Nucleation ability of multiwall carbon nanotubes in polypropylene Composites. J Polym Sci Poly Phys 41:520–527

    Article  Google Scholar 

  46. Haggenmueller R, Zhou W, Fischer JE, Winey KI (2003) Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J Nanosci Nanotechnol 3:105–110

    Article  Google Scholar 

  47. Li SN, Li ZM, Yang MB, Hu ZQ, Xu XB, Huang R (2004) Carbon nanotubes induced nonisothermal crystallization of ethylene–vinyl acetate copolymer. Mater Lett 58:3967–3970

    Article  Google Scholar 

  48. Jäger KM, Dammert RC, Sultan BÅ (2002) Thermal degradation studies of different polar polyethylene copolymers. J Appl Polym Sci 84:1465–1473

    Article  Google Scholar 

  49. Poomalai P, Ramaraj B, Siddaramaiah (2007) Thermal and mechanical properties of poly(methyl methacrylate) and ethylene vinyl acetate copolymer blends. J Appl Polym Sci 106:684–691

    Article  Google Scholar 

  50. Gaoa Z, Kanekob T, Houc D, Nakadab M (2004) Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stab 84:399–403

    Article  Google Scholar 

  51. Shibaev LA, Antonova TA, Vinogradova LV, Ginzburg BM, Ginzburg VG, Zgonnik VN, Melenevskaya EY (1997) Mass-spectrometric investigation of the thermal stability of polymethyl methacrylate in the presence of C60 fullerene. Tech Phys Lett 23:730–731

    Article  ADS  Google Scholar 

  52. Rosu D, Cascaval CN, Ciobanu C, Rosu L (2004) An investigation of the thermal degradation of epoxy maleate of bisphenol A. J Anal Appl Pyrol 72:191–196

    Article  Google Scholar 

  53. Wang M, Wang W, Liu T, Zhang WD (2008) Melt rheological properties of nylon 6/multi-walled carbon nanotube composites. Compos Sci Technol 68:2498–2502

    Article  Google Scholar 

  54. Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44:7513-7518

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santanu Chattopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Basuli, U., Panja, S., Chaki, T.K., Chattopadhyay, S. (2015). Preparation, Properties, and Processibility of Nanocomposites Based on Poly(ethylene-Co-Methyl Acrylate) and Multiwalled Carbon Nanotubes. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_79

Download citation

Publish with us

Policies and ethics