Advertisement

14 Integration of Metabolism with Virulence in Candida albicans

Chapter
  • 1.9k Downloads
Part of the The Mycota book series (MYCOTA, volume 13)

Abstract

The genome of the model pathogenic fungus Candida albicans was sequenced about a decade ago, facilitating unbiased genome-wide explorations of its pathobiology. These studies, in combination with the molecular and biochemical dissection of specific pathways and networks, have revealed that metabolic adaptation is intimately linked with the virulence of C. albicans. This fungus tunes its metabolic activity to specific host niches, and its virulence depends on the functionality of certain metabolic pathways. Also, its pathogenicity and antifungal drug susceptibility are modulated by growth on nutrients found in such niches. Specific regulators appear to coordinate the expression of metabolic functions with virulence factors such as yeast-hypha morphogenesis, thereby promoting host colonisation. It has become clear that the regulatory networks controlling certain metabolic pathways in C. albicans have undergone transcriptional rewiring in comparison with Saccharomyces cerevisiae, reflecting the evolutionary tuning of C. albicans to mammalian host niches.

Keywords

Amino Acid Metabolism Glyoxylate Cycle Central Carbon Metabolism Phenotypic Switching Amino Acid Starvation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

3AT

3-aminotriazole

bHLH

β-helix loop helix domain

GCN response

General amino acid control

ROS

Reactive oxygen species

GCRE

GCN Response Element

uORF

upstream Open Reading Frame

Notes

Acknowledgements

We are grateful to many colleagues for stimulating debates about Candida genomics, especially our friends in the Aberdeen Fungal Group and the European FINSysB Consortium and Ken Haynes and Jan Quinn. IVE and AJPB were supported by a grant from the European Commission (PITN-GA-2008-214004). AJPB was also supported by the European Research Council (ERC-2009-AdG-249793), the U.K. Biotechnology and Biological Sciences Research Council (BBS/B/06679; BB/C510391/1; BB/D009308/1; BB/F000111/1; BB/F010826/1; BB/F00513X/1), and the Wellcome Trust (080088; 097377).

References

  1. Albrecht G, Mosch HU, Hoffmann B, Reusser U, Braus GH (1998) Monitoring the Gcn4 protein-mediated response in the yeast Saccharomyces cerevisiae. J Biol Chem 273:12696–12702PubMedGoogle Scholar
  2. Almeida RS, Wilson D, Hube B (2009) Candida albicans iron acquisition within the host. FEMS Yeast Res 9:1000–1012PubMedGoogle Scholar
  3. Alonso-Monge R, Navarro-García F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sánchez M, Nombela C (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol 181:3058–3068PubMedCentralPubMedGoogle Scholar
  4. Andes D, Lepak A, Pitula A, Marchillo K, Clark J (2005) A simple approach for estimating gene expression in Candida albicans directly from a systemic infection site. J Infect Dis 192:893–900PubMedGoogle Scholar
  5. Askew C, Sellam A, Epp E, Hogues H, Mullick A, Nantel A, Whiteway M (2009) Transcriptional regulation of carbohydrate metabolism in the human pathogen Candida albicans. PLoS Pathog 5:e1000612PubMedCentralPubMedGoogle Scholar
  6. Bailey DA, Feldmann PJ, Bovey M, Gow NA, Brown AJ (1996) The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteins. J Bacteriol 178:5353–5360PubMedCentralPubMedGoogle Scholar
  7. Barelle CJ, Manson CL, MacCallum DM, Odds FC, Gow NA, Brown AJ (2004) GFP as a quantitative reporter of gene regulation in Candida albicans. Yeast 21:333–340PubMedGoogle Scholar
  8. Barelle CJ, Priest CL, Maccallum DM, Gow NA, Odds FC, Brown AJ (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971PubMedCentralPubMedGoogle Scholar
  9. Bertram G, Swoboda RK, Gooday GW, Gow NA, Brown AJ (1996) Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenase. Yeast 12:115–127PubMedGoogle Scholar
  10. Biswas K, Morschhauser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669PubMedGoogle Scholar
  11. Blankenship JR, Mitchell AP (2006) How to build a biofilm: a fungal perspective. Curr Opin Microbiol 9:588–594PubMedGoogle Scholar
  12. Bockmuhl DP, Ernst JF (2001) A potential phosphorylation site for an A-type kinase in the Efg1 regulator protein contributes to hyphal morphogenesis of Candida albicans. Genetics 157:1523–1530PubMedCentralPubMedGoogle Scholar
  13. Boeckstaens M, Andre B, Marini AM (2007) The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. Mol Microbiol 64:534–546PubMedGoogle Scholar
  14. Brand A (2012) Hyphal growth in human fungal pathogens and its role in virulence. Int J Microbiol 2012:517529PubMedCentralPubMedGoogle Scholar
  15. Brand A, MacCallum DM, Brown AJ, Gow NA, Odds FC (2004) Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3:900–909PubMedCentralPubMedGoogle Scholar
  16. Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109PubMedGoogle Scholar
  17. Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J 20:4753–4761PubMedCentralPubMedGoogle Scholar
  18. Brega E, Zufferey R, Mamoun CB (2004) Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell 3:135–143PubMedCentralPubMedGoogle Scholar
  19. Brock M (2009) Fungal metabolism in host niches. Curr Opin Microbiol 12:371–376PubMedGoogle Scholar
  20. Brown AJ (2005) Integration of metabolism with virulence in Candida albicans. In: Brown AJ (ed) The Mycota, vol 13, Fungal genomics. Springer, Berlin, pp 185–203Google Scholar
  21. Brown AJ, Gow NA (1999) Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol 7:333–338PubMedGoogle Scholar
  22. Brown AJ, Barelle CJ, Budge S, Duncan J, Harris S, Lee PR, Leng P, Macaskill S, Abdul Murad AM, Ramsdale M, Wiltshire C, Wishart JA, Gow NA (2000) Gene regulation during morphogenesis in Candida albicans. Contrib Microbiol 5:112–125PubMedGoogle Scholar
  23. Brown AJ, Odds FC, Gow NA (2007) Infection-related gene expression in Candida albicans. Curr Opin Microbiol 10:307–313PubMedGoogle Scholar
  24. Brown V, Sabina J, Johnston M (2009) Specialized sugar sensing in diverse fungi. Curr Biol 19:436–441PubMedCentralPubMedGoogle Scholar
  25. Brown AJ, Haynes K, Gow NAR, Quinn J (2011) Stress responses in Candida. In: Clancy CJ, Calderone RA (eds) Candida and candidiasis, 2nd edn. ASM Press, Washington, DC, pp 225–242Google Scholar
  26. Bruneau JM, Maillet I, Tagat E, Legrand R, Supatto F, Fudali C, Caer JP, Labas V, Lecaque D, Hodgson J (2003) Drug induced proteome changes in Candida albicans: comparison of the effect of beta(1,3) glucan synthase inhibitors and two triazoles, fluconazole and itraconazole. Proteomics 3:325–336PubMedGoogle Scholar
  27. Calderone R (2002) Candida and candidiasis. ASM Press, Washington, DCGoogle Scholar
  28. Calderone RA, Clancy CJ (2011) Candida and candidiasis. ASM Press, Washington, DCGoogle Scholar
  29. Chauvel M, Nesseir A, Cabral V, Znaidi S, Goyard S, Bachellier-Bassi S, Firon A, Legrand M, Diogo D, Naulleau C, Rossignol T, d’Enfert C (2012) A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness. PLoS One 7:e45912PubMedCentralPubMedGoogle Scholar
  30. Citiulo F, Jacobsen ID, Miramón P, Schild L, Brunke S, Zipfel P, Brock M, Hube B, Wilson D (2012) Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog 8:e1002777PubMedCentralPubMedGoogle Scholar
  31. Cowen LE, Nantel A, Whiteway MS, Thomas DY, Tessier DC, Kohn LM, Anderson JB (2002) Population genomics of drug resistance in Candida albicans. Proc Natl Acad Sci U S A 99:9284–9289PubMedCentralPubMedGoogle Scholar
  32. De Backer MD, Nelissen B, Logghe M, Viaene J, Loonen I, Vandoninck S, de Hoogt R, Dewaele S, Simons FA, Verhasselt P, Vanhoof G, Contreras R, Luyten WH (2001) An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans. Nat Biotechnol 19:235–241PubMedGoogle Scholar
  33. Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG (1992) Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596PubMedGoogle Scholar
  34. Doedt T, Krishnamurthy S, Bockmühl DP, Tebarth B, Stempel C, Russell CL, Brown AJ, Ernst JF (2004) APSES proteins regulate morphogenesis and metabolism in Candida albicans. Mol Biol Cell 15:3167–3180PubMedCentralPubMedGoogle Scholar
  35. Ellenberger TE, Brandl CJ, Struhl K, Harrison SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: crystal structure of the protein-DNA complex. Cell 71:1223–1237PubMedGoogle Scholar
  36. Ene IV, Adya AK, Wehmeier S, Brand AC, MacCallum DM, Gow NA, Brown AJ (2012a) Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol 14:1319–1335PubMedCentralPubMedGoogle Scholar
  37. Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJ (2012b) Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12:3164–3179PubMedCentralPubMedGoogle Scholar
  38. Ene IV, Cheng SC, Netea MG, Brown AJ (2013) Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells. Infect Immun 81:238–248PubMedCentralPubMedGoogle Scholar
  39. Enjalbert B, Nantel A, Whiteway M (2003) Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell 14:1460–1467PubMedCentralPubMedGoogle Scholar
  40. Enjalbert B, MacCallum DM, Odds FC, Brown AJ (2007) Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun 75:2143–2151PubMedCentralPubMedGoogle Scholar
  41. Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543PubMedGoogle Scholar
  42. Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415PubMedGoogle Scholar
  43. Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361PubMedCentralPubMedGoogle Scholar
  44. Garcia-Sanchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C (2004) Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell 3:536–545PubMedCentralPubMedGoogle Scholar
  45. García-Sánchez S, Mavor AL, Russell CL, Argimon S, Dennison P, Enjalbert B, Brown AJ (2005) Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. Mol Biol Cell 16:2913–2925PubMedCentralPubMedGoogle Scholar
  46. Gow NA, Knox Y, Munro CA, Thompson WD (2003) Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans. Med Mycol 41:331–338PubMedGoogle Scholar
  47. Gow NA, van de Veerdonk FL, Brown AJ, Netea MG (2011) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122PubMedCentralPubMedGoogle Scholar
  48. Harris AD, Castro J, Sheppard DC, Carmeli Y, Samore MH (1999) Risk factors for nosocomial candiduria due to Candida glabrata and Candida albicans. Clin Infect Dis 29:926–928PubMedGoogle Scholar
  49. Hellstein J, Vawter-Hugart H, Fotos P, Schmid J, Soll DR (1993) Genetic similarity and phenotypic diversity of commensal and pathogenic strains of Candida albicans isolated from the oral cavity. J Clin Microbiol 31:3190–3199PubMedCentralPubMedGoogle Scholar
  50. Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52:248–273PubMedCentralPubMedGoogle Scholar
  51. Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32PubMedCentralPubMedGoogle Scholar
  52. Hoffmann B, Valerius O, Andermann M, Braus GH (2001) Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 12:2846–2857PubMedCentralPubMedGoogle Scholar
  53. Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 46:1–15PubMedCentralPubMedGoogle Scholar
  54. Huang G (2012) Regulation of phenotypic transitions in the fungal pathogen Candida albicans. Virulence 3:251–261PubMedCentralPubMedGoogle Scholar
  55. Hudson DA, Sciascia QL, Sanders RJ, Norris GE, Edwards PJB, Sullivan PA, Farley PC (2004) Identification of the dialysable serum inducer of germ-tube formation in Candida albicans. Microbiology 150:3041–3049PubMedGoogle Scholar
  56. Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, Berman J, Barkai N (2005) Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309:938–940PubMedGoogle Scholar
  57. Jiménez-López C, Collette JR, Brothers KM, Shepardson KM, Cramer RA, Wheeler RT, Lorenz MC (2013) Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 12:91–100PubMedCentralPubMedGoogle Scholar
  58. Johnston M (1999) Feasting, fasting and fermenting. Glucose sensing in yeast and other cells. Trends Genet 15:29–33PubMedGoogle Scholar
  59. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A 101:7329–7334PubMedCentralPubMedGoogle Scholar
  60. Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505PubMedCentralPubMedGoogle Scholar
  61. Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912PubMedCentralPubMedGoogle Scholar
  62. Kastaniotis AJ, Zitomer RS (2000) Rox1 mediated repression. Oxygen dependent repression in yeast. Adv Exp Med Biol 475:185–195PubMedGoogle Scholar
  63. Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512PubMedCentralPubMedGoogle Scholar
  64. Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol 49:171–177PubMedGoogle Scholar
  65. Klis FM, Sosinska GJ, de Groot PW, Brul S (2009) Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res 9:1013–1028PubMedGoogle Scholar
  66. Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35PubMedCentralPubMedGoogle Scholar
  67. Kornitzer D, Raboy B, Kulka RG, Fink GR (1994) Regulated degradation of the transcription factor Gcn4. EMBO J 13:6021–6030PubMedCentralPubMedGoogle Scholar
  68. Korting HC, Hube B, Oberbauer S, Januschke E, Hamm G, Albrecht A, Borelli C, Schaller M (2003) Reduced expression of the hyphal-independent Candida albicans proteinase genes SAP1 and SAP3 in the efg1 mutant is associated with attenuated virulence during infection of oral epithelium. J Med Microbiol 52:623–632PubMedGoogle Scholar
  69. Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG (2001) Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 21:5018–5030PubMedCentralPubMedGoogle Scholar
  70. Lachke SA, Lockhart SR, Daniels KJ, Soll DR (2003) Skin facilitates Candida albicans mating. Infect Immun 71:4970–4976PubMedCentralPubMedGoogle Scholar
  71. Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N (2002) Metabolic specialization associated with phenotypic switching in Candida albicans. Proc Natl Acad Sci U S A 99:14907–14912PubMedCentralPubMedGoogle Scholar
  72. Lane S, Birse C, Zhou S, Matson R, Liu H (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996PubMedGoogle Scholar
  73. Lavoie H, Hogues H, Whiteway M (2009) Rearrangements of the transcriptional regulatory networks of metabolic pathways in fungi. Curr Opin Microbiol 12:655–663PubMedGoogle Scholar
  74. Leach MD, Stead DA, Argo E, MacCallum DM, Brown AJP (2011) Proteomic and molecular analyses highlight the importance of ubiquitination for stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol Microbiol 79:1574–1593PubMedCentralPubMedGoogle Scholar
  75. Leng P, Lee PR, Wu H, Brown AJ (2001) Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol 183:4090–4093PubMedCentralPubMedGoogle Scholar
  76. Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949PubMedGoogle Scholar
  77. Lohse MB, Johnson AD (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS One 3:e1473PubMedCentralPubMedGoogle Scholar
  78. Lohse MB, Johnson AD (2009) White-opaque switching in Candida albicans. Curr Opin Microbiol 12:650–654PubMedCentralPubMedGoogle Scholar
  79. Lorenz MC, Fink GR (2001) The glyoxylate cycle is required for fungal virulence. Nature 412:83–86PubMedGoogle Scholar
  80. Lorenz MC, Fink GR (2002) Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell 1:657–662PubMedCentralPubMedGoogle Scholar
  81. Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087PubMedCentralPubMedGoogle Scholar
  82. Maidan MM, Thevelein JM, Van Dijck P (2005) Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 33:291–293PubMedGoogle Scholar
  83. Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467PubMedCentralPubMedGoogle Scholar
  84. Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17:1007–1013PubMedGoogle Scholar
  85. Mayer FL, Wilson D, Jacobsen ID, Miramon P, Große K, Hube B (2012) The novel Candida albicans transporter Dur31 is a multi-stage pathogenicity factor. PLoS Pathog 8:e1002592PubMedCentralPubMedGoogle Scholar
  86. Miramon P, Dunker C, Windecker H, Bohovych IM, Brown AJP, Kurzai O, Hube B (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS One 7:e52850PubMedCentralPubMedGoogle Scholar
  87. Mueller PP, Hinnebusch AG (1986) Multiple upstream AUG codons mediate translational control of GCN4. Cell 45:201–207PubMedGoogle Scholar
  88. Murad AM, d’Enfert C, Gaillardin C, Tournu H, Tekaia F, Talibi D, Marechal D, Marchais V, Cottin J, Brown AJ (2001a) Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol Microbiol 42:981–993PubMedGoogle Scholar
  89. Murad AM, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJ (2001b) NRG1 represses yeast-hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752PubMedCentralPubMedGoogle Scholar
  90. Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926PubMedGoogle Scholar
  91. Nailis H, Kucharíková S, Ricicová M, Van Dijck P, Deforce D, Nelis H, Coenye T (2010) Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol 10:114PubMedCentralPubMedGoogle Scholar
  92. Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465PubMedCentralPubMedGoogle Scholar
  93. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368PubMedCentralPubMedGoogle Scholar
  94. Navarro-Garcia F, Sanchez M, Nombela C, Pla J (2001) Virulence genes in the pathogenic yeast Candida albicans. FEMS Microbiol Rev 25:245–268PubMedGoogle Scholar
  95. Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M, Brown AJ (2004) Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3:1111–1123PubMedCentralPubMedGoogle Scholar
  96. Niimi M, Kamiyama A, Tokunaga M (1988) Respiration of medically important Candida species and Saccharomyces cerevisiae in relation to glucose effect. J Med Vet Mycol 26:195–198PubMedGoogle Scholar
  97. Nikolaou E, Agrafioti I, Stumpf M, Quinn J, Stansfield I, Brown AJP (2009) Phylogenetic diversity of stress signalling pathways in fungi. BMC Evol Biol 9:44PubMedCentralPubMedGoogle Scholar
  98. Nobile CJ, Bruno VM, Richard ML, Davis DA, Mitchell AP (2003) Genetic control of chlamydospore formation in Candida albicans. Microbiology 149:3629–3637PubMedGoogle Scholar
  99. Nobile CJ, Schneider HA, Nett JE, Sheppard DC, Filler SG, Andes DR, Mitchell AP (2008) Complementary adhesin function in C. albicans biofilm formation. Curr Biol 18:1017–1024PubMedCentralPubMedGoogle Scholar
  100. Noble SM, French S, Kohn LA, Chen V, Johnson AD (2010) Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42:590–598PubMedCentralPubMedGoogle Scholar
  101. Odds FC (1988) Candida and candidosis. Bailliere Tindall, LondonGoogle Scholar
  102. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279PubMedGoogle Scholar
  103. Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleotides: analysis of yeast GCN4 protein. Mol Cell Biol 9:2944–2949PubMedCentralPubMedGoogle Scholar
  104. Paluh JL, Orbach MJ, Legerton TL, Yanofsky C (1988) The cross-pathway control gene of Neurospora crassa, cpc-1, encodes a protein similar to GCN4 of yeast and the DNA-binding domain of the oncogene v-jun-encoded protein. Proc Natl Acad Sci U S A 85:3728–3732PubMedCentralPubMedGoogle Scholar
  105. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346PubMedGoogle Scholar
  106. Petter R, Chang YC, Kwon-Chung KJ (1997) A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect Immun 65:4909–4917PubMedCentralPubMedGoogle Scholar
  107. Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163PubMedCentralPubMedGoogle Scholar
  108. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64PubMedCentralPubMedGoogle Scholar
  109. Piekarska K, Mol E, van den Berg M, Hardy G, van den Burg J, van Roermund C, MacCallum D, Odds F, Distel B (2006) Peroxisomal fatty acid beta-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell 5:1847–1856PubMedCentralPubMedGoogle Scholar
  110. Pierce JV, Dignard D, Whiteway M, Kumamoto CA (2013) Normal adaptation of Candida albicans to the murine gastrointestinal tract requires Efg1p-dependent regulation of metabolic and host defense genes. Eukaryot Cell 12:37–49PubMedCentralPubMedGoogle Scholar
  111. Ramirez MA, Lorenz MC (2007) Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell 6:280–290PubMedCentralPubMedGoogle Scholar
  112. Rao GR, Ramakrishnan T, Sirsi M (1960) Enzymes in Candida albicans. I. Pathways of glucose dissimilation. J Bacteriol 80:654–658PubMedCentralPubMedGoogle Scholar
  113. Rodaki A, Young T, Brown AJP (2006) Effects of depleting the essential central metabolic enzyme, fructose-1,6-bisphosphate aldolase, upon the growth and viability of Candida albicans: implications for antifungal drug target discovery. Eukaryot Cell 5:1371–1377PubMedCentralPubMedGoogle Scholar
  114. Rodaki A, Bohovych IM, Enjalbert B, Young T, Odds FC, Gow NA, Brown AJ (2009) Glucose promotes stress resistance in the fungal pathogen Candida albicans. Mol Biol Cell 20:4845–4855PubMedCentralPubMedGoogle Scholar
  115. Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, Tandia F, Linteau A, Sillaots S, Marta C, Martel N, Veronneau S, Lemieux S, Kauffman S, Becker J, Storms R, Boone C, Bussey H (2003) Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol 50:167–181PubMedGoogle Scholar
  116. Rogers PD, Barker KS (2003) Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 47:1220–1227PubMedCentralPubMedGoogle Scholar
  117. Rolfes RJ, Hinnebusch AG (1993) Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 13:5099–5111PubMedCentralPubMedGoogle Scholar
  118. Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317PubMedGoogle Scholar
  119. Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100:11007–11012PubMedCentralPubMedGoogle Scholar
  120. Russell CL, Brown AJP (2005) Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42:676–683PubMedGoogle Scholar
  121. Sabina J, Brown V (2009) Glucose sensing network in Candida albicans: a sweet spot for fungal morphogenesis. Eukaryot Cell 8:1314–1320PubMedCentralPubMedGoogle Scholar
  122. Sandai D, Yin Z, Selway L, Stead D, Walker J, Leach MD, Bohovych I, Ene IV, Kastora S, Budge S, Munro CA, Odds FC, Gow NA, Brown AJ (2012) The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. MBio 3. doi:10.1128/mBio.00495-12Google Scholar
  123. Sanglard D, Ischer F, Parkinson T, Falconer D, Bille J (2003) Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47:2404–2412PubMedCentralPubMedGoogle Scholar
  124. Sellam A, Hogues H, Askew C, Tebbji F, van Het Hoog M, Lavoie H, Kumamoto CA, Whiteway M, Nantel A (2010) Experimental annotation of the human pathogen Candida albicans coding and noncoding transcribed regions using high-resolution tiling arrays. Genome Biol 11:R71. doi: 10.1186/gb-2010-11-7-r71 PubMedCentralPubMedGoogle Scholar
  125. Shapiro RS, Robbins N, Cowen LE (2011) Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75:213–267PubMedCentralPubMedGoogle Scholar
  126. Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA (1999) HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 181:5273–5279PubMedCentralPubMedGoogle Scholar
  127. Smith RL, Johnson AD (2000) Turning genes off by Ssn6-Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25:325–330PubMedGoogle Scholar
  128. Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190PubMedCentralPubMedGoogle Scholar
  129. Sonneborn A, Bockmuhl DP, Ernst JF (1999a) Chlamydospore formation in Candida albicans requires the Efg1p morphogenetic regulator. Infect Immun 67:5514–5517PubMedCentralPubMedGoogle Scholar
  130. Sonneborn A, Tebarth B, Ernst JF (1999b) Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infect Immun 67:4655–4660PubMedCentralPubMedGoogle Scholar
  131. Srikantha T, Tsai LK, Daniels K, Soll DR (2000) EFG1 null mutants of Candida albicans switch but cannot express the complete phenotype of white-phase budding cells. J Bacteriol 182:1580–1591PubMedCentralPubMedGoogle Scholar
  132. Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991PubMedCentralPubMedGoogle Scholar
  133. Swoboda RK, Bertram G, Delbrück S, Ernst JF, Gow NA, Gooday GW, Brown AJ (1994) Fluctuations in glycolytic mRNA levels during morphogenesis in Candida albicans reflect underlying changes in growth and are not a response to cellular dimorphism. Mol Microbiol 13:663–672PubMedGoogle Scholar
  134. Tebarth B, Doedt T, Krishnamurthy S, Weide M, Monterola F, Dominguez A, Ernst JF (2003) Adaptation of the Efg1p morphogenetic pathway in Candida albicans by negative autoregulation and PKA-dependent repression of the EFG1 gene. J Mol Biol 329:949–962PubMedGoogle Scholar
  135. Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33:904–918PubMedGoogle Scholar
  136. Thewes S, Kretschmar M, Park H, Schaller M, Filler SG, Hube B (2007) In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol Microbiol 63:1606–1628PubMedGoogle Scholar
  137. Tobudic S, Kratzer C, Lassnigg A, Presterl E (2012) Antifungal susceptibility of Candida albicans in biofilms. Mycoses 55:199–204PubMedGoogle Scholar
  138. Tournu H, Tripathi G, Bertram G, Macaskill S, Mavor A, Walker L, Odds FC, Gow NA, Brown AJ (2005) Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Eukaryot Cell 4:1687–1696PubMedCentralPubMedGoogle Scholar
  139. Tripathi G, Wiltshire C, Macaskill S, Tournu H, Budge S, Brown AJ (2002) Gcn4 co-ordinates morphogenetic and metabolic responses to amino acid starvation in Candida albicans. EMBO J 21:5448–5456PubMedCentralPubMedGoogle Scholar
  140. Ueno K, Matsumoto Y, Uno J, Sasamoto K, Sekimizu K, Kinjo Y, Chibana H (2011) Intestinal resident yeast Candida glabrata requires Cyb2p-mediated lactate assimilation to adapt in mouse intestine. PLoS One 6:e24759PubMedCentralPubMedGoogle Scholar
  141. Uhl MA, Biery M, Craig N, Johnson AD (2003) Haploinsufficiency-based large-scale forward genetic analysis of filamentous growth in the diploid human fungal pathogen C. albicans. EMBO J 22:2668–2678PubMedCentralPubMedGoogle Scholar
  142. Van Neil CB, Cohen AL (1942) On the metabolism of Candida albicans. J Cell Comp Physiol 20:95–112Google Scholar
  143. Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H, Lorenz MC (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2:e00055–11PubMedCentralPubMedGoogle Scholar
  144. Walker LA, Maccallum DM, Bertram G, Gow NA, Odds FC, Brown AJ (2009) Genome-wide analysis of Candida albicans gene expression patterns during infection of the mammalian kidney. Fungal Genet Biol 46:210–219PubMedCentralPubMedGoogle Scholar
  145. Wanke C, Eckert S, Albrecht G, van Hartingsveldt W, Punt PJ, van den Hondel CA, Braus GH (1997) The Aspergillus niger GCN4 homologue, cpcA, is transcriptionally regulated and encodes an unusual leucine zipper. Mol Microbiol 23:23–33PubMedGoogle Scholar
  146. Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids. Mol Cell Biol 15:4497–4506PubMedCentralPubMedGoogle Scholar
  147. Williamson MI, Samaranayake LP, MacFarlane TW (1986) Biotypes of oral Candida albicans and Candida tropicalis isolates. J Med Vet Mycol 24:81–84PubMedGoogle Scholar
  148. Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9:688–700PubMedGoogle Scholar
  149. Yin Z, Wilson S, Hauser NC, Tournu H, Hoheisel JD, Brown AJ (2003) Glucose triggers different global responses in yeast, depending on the strength of the signal, transiently stabilizes ribosomal protein mRNAs. Mol Microbiol 48:713–724PubMedGoogle Scholar
  150. Yin Z, Stead D, Selway L, Walker J, Riba-Garcia I, McLnerney T, Gaskell S, Oliver SG, Cash P, Brown AJ (2004) Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4:2425–2436PubMedGoogle Scholar
  151. Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B (2007) In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol 9:2938–2954PubMedGoogle Scholar
  152. Zaragoza O, Rodriguez C, Gancedo C (2000) Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression. J Bacteriol 182:320–326PubMedCentralPubMedGoogle Scholar
  153. Zhao R, Lockhart SR, Daniels K, Soll DR (2002) Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans. Eukaryot Cell 1:353–365PubMedCentralPubMedGoogle Scholar
  154. Zhu Z, Wang H, Shang Q, Jiang Y, Cao Y, Chai Y (2012) Time course analysis of Candida albicans metabolites during biofilm development. J Proteome Res 12:2375–2385PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
  2. 2.Department of Molecular Microbiology and ImmunologyBrown UniversityProvidenceUSA

Personalised recommendations