Skip to main content

Tissue Engineering of Vascularized Adipose Tissue for Soft Tissue Reconstruction

  • Chapter
  • First Online:
Book cover Stem Cells in Aesthetic Procedures

Abstract

The coverage of extensive soft tissue defects following trauma, tumor resection, or excessive debridement presents a major challenge in plastic surgery. Despite success in recent decades with the innovation of microsurgery techniques and the related expansion of soft tissue resources, disadvantages of donor site morbidity and unreliable outcome still limit the enthusiasm for these procedures. The desire for engineered tissues to circumvent these difficulties has inspired numerous investigators across various scientific disciplines. In this respect, adipose tissue has been of increasing interest, due to its comparably basic architecture and high plasticity that make it suitable for universal soft tissue coverage. There is general agreement that adequate adipogenesis may be achieved solely under circumstances of adequate angiogenesis. However, approaches to achieve the ultimate goal of perfused adipose tissue are diverse and varied with a growing cache ranging from deployment of growth factors, matrix, or scaffold systems; injectable composite systems; varying nutrient vessel configurations; chamber spaces; and external tissue expansion—all with and without the application of precursor cells. Major developments in the areas of these assorted approaches will be reviewed as progress toward achieving ideally engineered vascularized adipose tissue is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown SA, Levi B, Lequeux C, Wong VW, Mojallal A, Longaker MT. Basic science review on adipose tissue for clinicians. Plast Reconstr Surg. 2010;126(6): 1936–4619.

    Article  CAS  PubMed  Google Scholar 

  2. Nnodim JO. Development of adipose tissues. Anat Rec. 1987;219(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  3. Gesta S, Tseng Y, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131(2): 242–56.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn P, Novak M. Development of brown and white adipose tissue. J Lipid Res. 1975;16(2):79–91.

    CAS  PubMed  Google Scholar 

  5. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  6. Park HY, Kwon HM, Lim HJ, Hong BK, Lee JY, Park BE, Jang Y, Cho SY, Kim HS. Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp Mol Med. 2001;33(2):95–102.

    Article  CAS  PubMed  Google Scholar 

  7. Bouloumié A, Drexler HC, Lafontan M, Busse R. Leptin, the product of Ob gene, promotes angiogenesis. Circ Res. 1998;83(10):1059–66.

    Article  PubMed  Google Scholar 

  8. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7(2):211–28.

    Article  CAS  PubMed  Google Scholar 

  9. Rajashekhar G, Traktuev DO, Roell WC, Johnstone BH, Merfeld-Clauss S, Van Natta B, Rosen ED, March KL, Clauss M. IFATS collection: Adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling. Stem Cells. 2008;26(10):2674–81.

    Article  PubMed  Google Scholar 

  10. Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P, Hedrick MH. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg. 2003;111(6):1922–31.

    Article  PubMed  Google Scholar 

  11. Banas A. Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells. Methods Mol Biol. 2012;826:61–72.

    Article  CAS  PubMed  Google Scholar 

  12. Planat-Benard V, Silvestre J, Cousin B, André M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation. 2004;109(5):656–63.

    Article  PubMed  Google Scholar 

  13. Mariman ECM, Wang P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell Mol Life Sci. 2010;67(8):1277–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Covas DT, Panepucci RA, Fontes AM, Silva Jr WA, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008;36(5):642–54.

    Article  CAS  PubMed  Google Scholar 

  15. Bowers RR, Kim JW, Otto TC, Lane MD. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene. Proc Natl Acad Sci U S A. 2006;103(35):13022–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bowers RR, Lane MD. Wnt signaling and adipocyte lineage commitment. Cell Cycle. 2008;7(9):1191–6.

    Article  CAS  PubMed  Google Scholar 

  17. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81:715–36.

    Article  CAS  PubMed  Google Scholar 

  18. Student AK, Hsu RY, Lane MD. Induction of fatty acid synthetase synthesis in differentiating 3T3-L1 preadipocytes. J Biol Chem. 1980;255(10):4745–50.

    CAS  PubMed  Google Scholar 

  19. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem. 1995;64:345–73.

    Article  CAS  PubMed  Google Scholar 

  20. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71.

    Article  CAS  PubMed  Google Scholar 

  21. Gehmert S, Gehmert S, Hidayat M, Sultan M, Berner A, Klein S, Zellner J, Müller M, Prantl L. Angiogenesis: the role of PDGF-BB on adipose-tissue derived stem cells (ASCs). Clin Hemorheol Microcirc. 2011;48(1):5–13.

    PubMed  Google Scholar 

  22. Crandall DL, Hausman GJ, Kral JG. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation. 1997;4(2):211–32.

    Article  CAS  PubMed  Google Scholar 

  23. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci. 2004;82(3):925–34.

    CAS  PubMed  Google Scholar 

  24. Papetti M, Herman IM. Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol. 2002;282(5):C947–70.

    Article  CAS  PubMed  Google Scholar 

  25. Liekens S, de Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 2001;61(3):253–70.

    Article  CAS  PubMed  Google Scholar 

  26. Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407(6801):242–8.

    Article  CAS  PubMed  Google Scholar 

  27. Stillaert FBJL, Blondeel P, Hamdi M, Abberton K, Thompson E, Morrison WA. Adipose tissue induction in vivo. Adv Exp Med Biol. 2006;585:403–12.

    Article  CAS  PubMed  Google Scholar 

  28. Dresser R. Stem cell research as innovation: expanding the ethical and policy conversation. J Law Med Ethics. 2010;38(2):332–41.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schreml S, Babilas P, Fruth S, Orsó E, Schmitz G, Mueller MB, Nerlich M, Prantl L. Harvesting human adipose tissue-derived adult stem cells: resection versus liposuction. Cytotherapy. 2009;11(7):947–57.

    Article  CAS  PubMed  Google Scholar 

  30. Alhadlaq A, Tang M, Mao JJ. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng. 2005;11(3–4):556–66.

    Article  CAS  PubMed  Google Scholar 

  31. Weiser B, Prantl L, Schubert TE, Zellner J, Fischbach-Teschl C, Spruss T, Seitz AK, Tessmar J, Goepferich A, Blunk T. In vivo development and long-term survival of engineered adipose tissue depend on in vitro precultivation strategy. Tissue Eng Part A. 2008;14(2):275–84.

    Article  CAS  PubMed  Google Scholar 

  32. Rittig K, Dolderer JH, Balletshofer B, Machann J, Schick F, Meile T, Küper M, Stock UA, Staiger H, Machicao F, Schaller HE, Königsrainer A, Häring HU, Siegel-Axel DI. The secretion pattern of perivascular fat cells is different from that of subcutaneous and visceral fat cells. Diabetologia. 2012;55(5):1514–25.

    Article  CAS  PubMed  Google Scholar 

  33. Gomillion CT, Burg KJL. Stem cells and adipose tissue engineering. Biomaterials. 2006;27(36):6052–63.

    Article  CAS  PubMed  Google Scholar 

  34. Kawaguchi N, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A. 1998;95(3):1062–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Flynn L, Prestwich GD, Semple JL, Woodhouse KA. Adipose tissue engineering in vivo with adipose-derived stem cells on naturally derived scaffolds. J Biomed Mater Res A. 2009;89(4):929–41.

    Article  CAS  PubMed  Google Scholar 

  36. von Heimburg D, Zachariah S, Heschel I, Kühling H, Schoof H, Hafemann B, Pallua N. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo. Biomaterials. 2001;22(5):429–38.

    Article  Google Scholar 

  37. Kimura Y, Ozeki M, Inamoto T, Tabata Y. Adipose tissue engineering based on human preadipocytes combined with gelatin microspheres containing basic fibroblast growth factor. Biomaterials. 2003;24(14):2513–21.

    Article  CAS  PubMed  Google Scholar 

  38. Masuda T, Furue M, Matsuda T. Novel strategy for soft tissue augmentation based on transplantation of fragmented omentum and preadipocytes. Tissue Eng. 2004;10(11–12):1672–83.

    Article  CAS  PubMed  Google Scholar 

  39. Hemmrich K, von Heimburg D, Rendchen R, Di Bartolo C, Milella E, Pallua N. Implantation of preadipocyte-loaded hyaluronic acid-based scaffolds into nude mice to evaluate potential for soft tissue engineering. Biomaterials. 2005;26(34):7025–37.

    Article  CAS  PubMed  Google Scholar 

  40. Torio-Padron N, Baerlecken N, Momeni A, Stark GB, Borges J. Engineering of adipose tissue by injection of human preadipocytes in fibrin. Aesthetic Plast Surg. 2007;31(3):285–93.

    Article  PubMed  Google Scholar 

  41. Jing W, Lin Y, Wu L, Li X, Nie X, Liu L, Tang W, Zheng X. Tian W Ectopic adipogenesis of preconditioned adipose-derived stromal cells in an alginate system. Cell Tissue Res. 2007;330(3):567–72.

    Article  PubMed  Google Scholar 

  42. Choi YC, Choi JS, Kim BS, Kim JD, Yoon HI, Cho YW. Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering. Tissue Eng Part C Methods. 2012;18(11):866–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Patrick CW, Zheng B, Johnston C, Reece GP. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 2002;8(2):283–93.

    Article  CAS  PubMed  Google Scholar 

  44. Shenaq SM, Yuksel E. New research in breast reconstruction: adipose tissue engineering. Clin Plast Surg. 2002;29(1):111–25.

    Article  PubMed  Google Scholar 

  45. Cho S, Kim S, Rhie JW, Cho HM, Choi CY, Kim B. Engineering of volume-stable adipose tissues. Biomaterials. 2005;26(17):3577–85.

    Article  CAS  PubMed  Google Scholar 

  46. Cao Y, Mitchell G, Messina A, Price L, Thompson E, Penington A, Morrison W, O‘Connor A, Stevens G, Cooper-White J. The influence of architecture on degradation and tissue ingrowth into three-dimensional poly(lactic-co-glycolic acid) scaffolds in vitro and in vivo. Biomaterials. 2006;27(14):2854–64.

    Article  CAS  PubMed  Google Scholar 

  47. Dolderer JH, Abberton KM, Thompson EW, Slavin JL, Stevens GW, Penington AJ, Morrison WA. Spontaneous large volume adipose tissue generation from a vascularized pedicled fat flap inside a chamber space. Tissue Eng. 2007;13(4):673–81.

    Article  CAS  PubMed  Google Scholar 

  48. Stosich MS, Bastian B, Marion NW, Clark PA, Reilly G, Mao JJ. Vascularized adipose tissue grafts from human mesenchymal stem cells with bioactive cues and microchannel conduits. Tissue Eng. 2007;13(12): 2881–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Uriel S, Huang J, Moya ML, Francis ME, Wang R, Chang SY, Cheng MH, Brey EM. The role of adipose protein derived hydrogels in adipogenesis. Biomaterials. 2008;29(27):3712–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lee T, Bhang SH, La W, Kwon SH, Shin JY, Yoon HH, Shin H, Cho DW, Kim BS. Volume-stable adipose tissue formation by implantation of human adipose-derived stromal cells using solid free-form fabrication-based polymer scaffolds. Ann Plast Surg. 2013;70(1):98–102.

    Google Scholar 

  51. Wiggenhauser PS, Müller DF, Melchels FP, Egaña JT, Storck K, Mayer H, Leuthner P, Skodacek D, Hopfner U, Machens HG, Staudenmaier R, Schantz JT. Engineering of vascularized adipose constructs. Cell Tissue Res. 2012;347(3):747–57.

    Article  CAS  PubMed  Google Scholar 

  52. Kelly JL, Findlay MW, Knight KR, Penington A, Thompson EW, Messina A, Morrison WA. Contact with existing adipose tissue is inductive for adipogenesis in matrigel. Tissue Eng. 2006;12(7):2041–7.

    Article  CAS  PubMed  Google Scholar 

  53. Tabata Y, Miyao M, Inamoto T, Ishii T, Hirano Y, Yamaoki Y, Ikada Y. De novo formation of adipose tissue by controlled release of basic fibroblast growth factor. Tissue Eng. 2000;6(3):279–89.

    Article  CAS  PubMed  Google Scholar 

  54. Cronin KJ, Messina A, Thompson EW, Morrison WA, Stevens GW, Knight KR. The role of biological extracellular matrix scaffolds in vascularized three-dimensional tissue growth in vivo. J Biomed Mater Res B Appl Biomater. 2007;82(1):122–8.

    Article  PubMed  Google Scholar 

  55. Rophael JA, Craft RO, Palmer JA, Hussey AJ, Thomas GP, Morrison WA, Penington AJ, Mitchell GM. Angiogenic growth factor synergism in a murine tissue engineering model of angiogenesis and adipogenesis. Am J Pathol. 2007;171(6):2048–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Vashi AV, Abberton KM, Thomas GP, Morrison WA, O‘Connor AJ, Cooper-White JJ, Thompson EW. Adipose tissue engineering based on the controlled release of fibroblast growth factor-2 in a collagen matrix. Tissue Eng. 2006;12(11):3035–43.

    Article  CAS  PubMed  Google Scholar 

  57. Hiraoka Y, Yamashiro H, Yasuda K, Kimura Y, Inamoto T, Tabata Y. In situ regeneration of adipose tissue in rat fat pad by combining a collagen scaffold with gelatin microspheres containing basic fibroblast growth factor. Tissue Eng. 2006;12(6):1475–87.

    Article  CAS  PubMed  Google Scholar 

  58. Moya ML, Cheng M, Huang J, Francis-Sedlak ME, Kao SW, Opara EC, Brey EM. The effect of FGF-1 loaded alginate microbeads on neovascularization and adipogenesis in a vascular pedicle model of adipose tissue engineering. Biomaterials. 2010;31(10):2816–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bülow J. Measurement of adipose tissue blood flow. Methods Mol Biol. 2001;155:281–93.

    PubMed  Google Scholar 

  60. Walton RL, Beahm EK, Wu L. De novo adipose formation in a vascularized engineered construct. Microsurgery. 2004;24(5):378–84.

    Article  PubMed  Google Scholar 

  61. Cronin KJ, Messina A, Knight KR, Cooper-White JJ, Stevens GW, Penington AJ, Morrison WA. New murine model of spontaneous autologous tissue engineering, combining an arteriovenous pedicle with matrix materials. Plast Reconstr Surg. 2004;113(1):260–9.

    Article  PubMed  Google Scholar 

  62. Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 2000;6(6):595–603.

    Article  CAS  PubMed  Google Scholar 

  63. Tanaka Y, Sung K, Tsutsumi A, Ohba S, Ueda K, Morrison WA. Tissue engineering skin flaps: which vascular carrier, arteriovenous shunt loop or arteriovenous bundle, has more potential for angiogenesis and tissue generation? Plast Reconstr Surg. 2003;112(6):1636–44.

    Article  PubMed  Google Scholar 

  64. Dolderer JH, Kehrer A, Schiller SM, Schröder UH, Kohler K, Schaller HE, Siegel-Axel D. De-novo Generierung von vaskularisiertem Gewebe mittels unterschiedlicher Gefässstielkonfigurationen in perforierten und geschlossenen Wachstumskammern. Wien Med Wochenschr. 2010;160(5–6):139–46.

    Article  PubMed  Google Scholar 

  65. van Hinsbergh VW, Collen A, Koolwijk P. Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci. 2001;936:426–37.

    Article  PubMed  Google Scholar 

  66. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J. 2007;21(2):511–22.

    Article  CAS  PubMed  Google Scholar 

  67. Tanaka Y, Sung K, Fumimoto M, Tsutsumi A, Kondo S, Hinohara Y, Morrison WA. Prefabricated engineered skin flap using an arteriovenous vascular bundle as a vascular carrier in rabbits. Plast Reconstr Surg. 2006;117(6):1860–75.

    Article  CAS  PubMed  Google Scholar 

  68. Ersek RA. Transplantation of purified autologous fat: a 3-year follow-up is disappointing. Plast Reconstr Surg. 1991;87(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  69. Dolderer JH, Thompson EW, Slavin J, Trost N, Cooper-White JJ, Cao Y, O‘connor AJ, Penington A, Morrison WA, Abberton KM. Long-term stability of adipose tissue generated from a vascularized pedicled fat flap inside a chamber. Plast Reconstr Surg. 2011;127(6):2283–92.

    Article  PubMed  Google Scholar 

  70. Findlay MW, Dolderer JH, Trost N, Craft RO, Cao Y, Cooper-White J, Stevens G, Morrison WA. Tissue-engineered breast reconstruction: bridging the gap toward large-volume tissue engineering in humans. Plast Reconstr Surg. 2011;128(6):1206–15.

    Article  CAS  PubMed  Google Scholar 

  71. Khouri RK, Eisenmann-Klein M, Cardoso E, Cooley BC, Kacher D, Gombos E, Baker TJ. Brava and autologous fat transfer is a safe and effective breast augmentation alternative: results of a 6-year, 81-patient, prospective multicenter study. Plast Reconstr Surg. 2012;129(5):1173–87.

    Article  CAS  PubMed  Google Scholar 

  72. Kato H, Suga H, Eto H, Araki J, Aoi N, Doi K, Iida T, Tabata Y, Yoshimura K. Reversible adipose tissue enlargement induced by external tissue suspension: possible contribution of basic fibroblast growth factor in the preservation of enlarged tissue. Tissue Eng Part A. 2010;16(6):2029–40.

    Article  CAS  PubMed  Google Scholar 

  73. Ruiz SA, Chen CS. Emergence of patterned stem cell differentiation within multicellular structures. Stem Cells. 2008;26(11):2921–7.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen H. Dolderer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, S.M., Vykoukal, J., Prantl, L., Dolderer, J.H. (2014). Tissue Engineering of Vascularized Adipose Tissue for Soft Tissue Reconstruction. In: Shiffman, M., Di Giuseppe, A., Bassetto, F. (eds) Stem Cells in Aesthetic Procedures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45207-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45207-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45206-2

  • Online ISBN: 978-3-642-45207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics