Advertisement

Theories and Mechanisms of Aging

  • Christian Behl
  • Christine Ziegler
Chapter
Part of the SpringerBriefs in Molecular Medicine book series (BRIEFSMOME)

Abstract

The more one learns about single processes and genes known to be involved in aging, the more it becomes evident that these are connected and there is no unifying theory of aging. The individual theories put individual factors and processes in focus and for each theory there are direct links to life span or to age-related disorders. In the following chapter, the key theories of aging focusing on telomeres, DNA damage, oxidative stress as well as possible roles of nutrition, the interplay between genes and environment (epigenetics) and cellular protein homeostasis are presented. In animal models the life span can be altered by targeting specific genes, proteins and signalling pathways. After reviewing all these different mechanisms and factors obviously involved in the aging process of cells and organisms it becomes clear that aging is a multifactorial process where various intimate mutual interactions can be identified. Consequently, at the end of this chapter the idea of a molecular aging matrix composed of the major players affecting and triggering the aging process is developed.

Keywords

Theories of aging Telomeres DNA damage DNA repair Sirtuins Caloric restriction Life span extension Oxidative stress Protein homeostasis Epigenetics Molecular aging matrix 

References

  1. Adwan L, Zawia NH (2013) Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 139(1):41–50Google Scholar
  2. Alberts B, Johnson A, Walter P, Lewis J, Raff M, Roberts K (2007) Molecular biology of the cell, 5th revised edn. Taylor & Francis, New YorkGoogle Scholar
  3. Alegría-Torres JA, Baccarelli A, Bollati V (2011) Epigenetics and lifestyle. Epigenomics 3(3):267–277PubMedCentralPubMedGoogle Scholar
  4. Alexander P (1967) The role of DNA lesions in processes leading to aging in mice. Symp Soc Exp Biol 21:29–50PubMedGoogle Scholar
  5. Amm I, Sommer T, Wolf DH (2013) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta [Epub ahead of print]Google Scholar
  6. Anselmi B, Conconi M, Veyrat-Durebex C, Turlin E, Biville F, Alliot J, Friguet B (1998) Dietary self-selection can compensate an age-related decrease of rat liver 20 S proteasome activity observed with standard diet. J Gerontol A Biol Sci Med Sci 53(3):B173–B179PubMedGoogle Scholar
  7. Atzmon G, Cho M, Cawthon RM, Budagov T, Katz M, Yang X, Siegel G, Bergman A, Huffman DM, Schechter CB, Wright WE, Shay JW, Barzilai N, Govindaraju DR, Suh Y (2010) Evolution in health and medicine Sackler colloquium: genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A 107(Suppl 1):1710–1717PubMedCentralPubMedGoogle Scholar
  8. Austad SN (2010) Methusaleh’s Zoo: how nature provides us with clues for extending human health span. J Comp Pathol 142(Suppl 1):S10–S21PubMedCentralPubMedGoogle Scholar
  9. Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32(6):491–509PubMedGoogle Scholar
  10. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120(4):483–495PubMedGoogle Scholar
  11. Barneda-Zahonero B, Parra M (2012) Histone deacetylases and cancer. Mol Oncol 6(6):579–589PubMedGoogle Scholar
  12. Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):28–34PubMedGoogle Scholar
  13. Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S (2008) Histone modifications and nuclear architecture: a review. J Histochem Cytochem 56(8):711–721PubMedGoogle Scholar
  14. Beauharnois JM, Bolívar BE, Welch JT (2013) Sirtuin 6: a review of biological effects and potential therapeutic properties. Mol Biosyst 9(7):1789–1806PubMedGoogle Scholar
  15. Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77(6):817–827PubMedGoogle Scholar
  16. Behl C, Moosmann B (2002) Oxidative nerve cell death in Alzheimer’s disease and stroke: antioxidants as neuroprotective compounds. Biol Chem 383(3–4):521–536PubMedGoogle Scholar
  17. Behl C (2012) Brain aging and late-onset Alzheimer’s disease: many open questions. Int Psychogeriatr 24(Suppl 1):S3–S9PubMedGoogle Scholar
  18. Behl C, Moosmann B (2008) Molekulare Mechanismen des Alterns. Über das Altern der Zellen und den Einfluss von oxidativem Stress auf den Alternsprozess. In: Staudinger UM, Häfner H (eds) Was ist Alter(n)? Neue Antworten auf eine scheinbar einfache Frage, pp 9–32. Spinger, Berlin [Schriften der Mathematisch-naturwissenschaftlichen Klasse der Heidelberger Akademie der Wissenschaften, Nr. 18, 2008]Google Scholar
  19. Ben-Avraham D, Muzumdar RH, Atzmon G (2012) Epigenetic genome-wide association methylation in aging and longevity. Epigenomics 4(5):503–509PubMedGoogle Scholar
  20. Bender A, Hajieva P, Moosmann B (2008) Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci U S A 105(43):16496–16501PubMedCentralPubMedGoogle Scholar
  21. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783PubMedGoogle Scholar
  22. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H, Yu W, Rongione MA, Ekström TJ, Harris TB, Launer LJ, Eiriksdottir G, Leppert MF, Sapienza C, Gudnason V, Feinberg AP (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24):2877–2883PubMedCentralPubMedGoogle Scholar
  23. Blüher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299(5606):572–574PubMedGoogle Scholar
  24. Bourzac K (2012) Interventions: live long and prosper. Nature 492(7427):S18–S20PubMedGoogle Scholar
  25. Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9(4):297–308PubMedGoogle Scholar
  26. Brown MK, Naidoo N (2012) The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol 3:263PubMedCentralPubMedGoogle Scholar
  27. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384(6604):33PubMedGoogle Scholar
  28. Brown-Borg HM, Bartke A (2012) GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci 67(6):652–660PubMedGoogle Scholar
  29. Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125(3):443–451PubMedGoogle Scholar
  30. Burgess RJ, Zhang Z (2010) Histones, histone chaperones and nucleosome assembly. Protein Cell 1(7):607–612PubMedGoogle Scholar
  31. Burtner CR, Kennedy BK (2010) Progeria syndromes and ageing: what is the connection? Nat Rev Mol Cell Biol 11(8):567–578PubMedGoogle Scholar
  32. Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y, Maragh M, Gilliland DG (1996) Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 88(1):59–65PubMedGoogle Scholar
  33. Carafa V, Nebbioso A, Altucci L (2012) Sirtuins and disease: the road ahead. Front Pharmacol 3:4PubMedCentralPubMedGoogle Scholar
  34. Casorelli I, Bossa C, Bignami M (2012) DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. Int J Environ Res Public Health 9(8):2636–2657PubMedGoogle Scholar
  35. Cech TR (2004) Beginning to understand the end of the chromosome. Cell 116(2):273–279PubMedGoogle Scholar
  36. Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 130(6):377–383PubMedGoogle Scholar
  37. Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124(Pt 2):161–170PubMedGoogle Scholar
  38. Chevanne M, Calia C, Zampieri M, Cecchinelli B, Caldini R, Monti D, Bucci L, Franceschi C, Caiafa P (2007) Oxidative DNA damage repair and parp 1 and parp 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res 10(2):191–204PubMedGoogle Scholar
  39. Chouliaras L, van den Hove DL, Kenis G, Keitel S, Hof PR, van Os J, Steinbusch HW, Schmitz C, Rutten BP (2012) Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiol Aging 33(8):1672–1681PubMedCentralPubMedGoogle Scholar
  40. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106PubMedGoogle Scholar
  41. Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768PubMedGoogle Scholar
  42. Clement AB, Gamerdinger M, Tamboli IY, Lütjohann D, Walter J, Greeve I, Gimpl G, Behl C (2009) Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function. J Neurochem 111(3):669–682PubMedGoogle Scholar
  43. Clement AB, Gimpl G, Behl C (2010) Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radic Biol Med 48(9):1236–1241PubMedGoogle Scholar
  44. Cline SD (2012) Mitochondrial DNA damage and its consequences for mitochondrial gene expression. Biochim Biophys Acta 1819(9–10):979–991PubMedCentralPubMedGoogle Scholar
  45. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204PubMedCentralPubMedGoogle Scholar
  46. Corey DR (2009) Telomeres and telomerase: from discovery to clinical trials. Chem Biol 16(12):1219–1223PubMedCentralPubMedGoogle Scholar
  47. Cornaro L (2005) English translation by Butler WF (1903) The art of living long. Springer, New YorkGoogle Scholar
  48. Couzin-Frankel J (2011) Genetics. Aging genes: the sirtuin story unravels. Science 334(6060):1194–1198Google Scholar
  49. Cuervo AM, Dice JF (2000) Age-related decline in chaperone-mediated autophagy. J Biol Chem 275(40):31505–31513PubMedGoogle Scholar
  50. Culotta E, Koshland DE Jr (1992) NO news is good news. Science 258(5090):1862–1865PubMedGoogle Scholar
  51. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12(12):801–817PubMedGoogle Scholar
  52. D’Aquila P, Rose G, Bellizzi D, Passarino G (2013) Epigenetics and aging. Maturitas 74(2):130–136PubMedGoogle Scholar
  53. Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185PubMedGoogle Scholar
  54. David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, Kenyon C (2010) Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8:e1000450Google Scholar
  55. David DC (2012) Aging and the aggregating proteome. Front Genet 3:247PubMedCentralPubMedGoogle Scholar
  56. Decker ML, Chavez E, Vulto I, Lansdorp PM (2009) Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 130(6):377–383Google Scholar
  57. Dhurandhar EJ, Allison DB, van Groen T, Kadish I (2013) Hunger in the absence of caloric restriction improves cognition and attenuates Alzheimer’s disease pathology in a mouse model. PLoS One 8(4):e60437PubMedCentralPubMedGoogle Scholar
  58. Dikic I, Johansen T, Kirkin V (2010) Selective autophagy in cancer development and therapy. Cancer Res 70(9):3431–3434PubMedGoogle Scholar
  59. Dobashi Y, Watanabe Y, Miwa C, Suzuki S, Koyama S (2011) Mammalian target of rapamycin: a central node of complex signaling cascades. Int J Clin Exp Pathol 4(5):476–495PubMedCentralPubMedGoogle Scholar
  60. Dong S, Duan Y, Hu Y, Zhao Z (2012) Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 1(1):18PubMedCentralPubMedGoogle Scholar
  61. Donmez G, Wang D, Cohen DE, Guarente L (2010) SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 142(2):320–332 (Erratum in: Cell 142(3):494–495)PubMedCentralPubMedGoogle Scholar
  62. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141(4):1399–1406PubMedGoogle Scholar
  63. Dunlop RA, Brunk UT, Rodgers KJ (2009) Oxidized proteins: mechanisms of removal and consequences of accumulation. IUBMB Life 61(5):522–527PubMedGoogle Scholar
  64. De Duve C, Wattiaux R (1966) Functions of lysosomes. Annu Rev Physiol 28:435–492PubMedGoogle Scholar
  65. Ewbank JJ (2006) Signaling in the immune response (23 Jan 2006). In: WormBook (ed) The C. elegans research community, WormBook. doi: 10.1895/wormbook.1.83.1, http://www.wormbook.org
  66. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328(5976):321–326PubMedCentralPubMedGoogle Scholar
  67. Foster DA, Yellen P, Xu L, Saqcena M (2010) Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1(11):1124–1131PubMedCentralPubMedGoogle Scholar
  68. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23(8):413–418Google Scholar
  69. Fredrickson EK, Gardner RG (2012) Selective destruction of abnormal proteins by ubiquitin-mediated protein quality control degradation. Semin Cell Dev Biol 23(5):530–537PubMedCentralPubMedGoogle Scholar
  70. Freeman JA, Espinosa JM (2013) The impact of post-transcriptional regulation in the p53 network. Brief Funct Genomics 12(1):46–57PubMedGoogle Scholar
  71. Freitas AA, de Magalhães JP (2011) A review and appraisal of the DNA damage theory of ageing. Mutat Res 728(1–2):12–22PubMedGoogle Scholar
  72. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118(1):75–86PubMedGoogle Scholar
  73. Galjaard S, Devlieger R, Van Assche FA (2013) Fetal growth and developmental programming. J Perinat Med 41(1):101–105PubMedGoogle Scholar
  74. Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU, Behl C (2009) Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J 28(7):889–901PubMedGoogle Scholar
  75. Gamerdinger M, Carra S, Behl C (2011b) Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. J Mol Med (Berl) 89(12):1175–1182Google Scholar
  76. Gamerdinger M, Kaya AM, Wolfrum U, Clement AM, Behl C (2011a) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12(2):149–56Google Scholar
  77. Gensler HL, Bernstein H (1981) DNA damage as the primary cause of aging. Q Rev Biol 56(3):279–303PubMedGoogle Scholar
  78. Germann MW, Johnson CN, Spring AM (2012) Recognition of damaged DNA: structure and dynamic markers. Med Res Rev 32(3):659–683PubMedGoogle Scholar
  79. Gkogkolou P, Böhm M (2012) Advanced glycation end products: key players in skin aging? Dermatoendocrinol 4(3):259–270PubMedCentralPubMedGoogle Scholar
  80. González-Suárez E, Geserick C, Flores JM, Blasco MA (2005) Antagonistic effects of telomerase on cancer and aging in K5-mTert transgenic mice. Oncogene 24(13):2256–2270PubMedGoogle Scholar
  81. Gonzalo S (2010) Epigenetic alterations in aging. J Appl Physiol 109(2):586–597PubMedGoogle Scholar
  82. Gredilla R, Garm C, Stevnsner T (2012) Nuclear and mitochondrial DNA repair in selected eukaryotic aging model systems. Oxid Med Cell Longev 2012:282438PubMedCentralPubMedGoogle Scholar
  83. Greer EL, Maures TJ, Hauswirth AG, Green EM, Leeman DS, Maro GS, Han S, Banko MR, Gozani O, Brunet A (2010) Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans. Nature 466(7304):383–387PubMedCentralPubMedGoogle Scholar
  84. Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, Levkau B, Nitsch RM (2000) The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J Neurosci 20(19):7345–7352PubMedGoogle Scholar
  85. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1):405–413PubMedGoogle Scholar
  86. Grillari J, Grillari-Voglauer R (2010) Novel modulators of senescence, aging, and longevity: small non-coding RNAs enter the stage. Exp Gerontol 45(4):302–311PubMedGoogle Scholar
  87. Guarente L (2011) Franklin H. Epstein lecture: sirtuins, aging, and medicine. N Engl J Med 364(23):2235–2244PubMedGoogle Scholar
  88. Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085PubMedGoogle Scholar
  89. Gupta J, Tikoo K (2012) Involvement of insulin-induced reversible chromatin remodeling in altering the expression of oxidative stress-responsive genes under hyperglycemia in 3T3-L1 preadipocytes. Gene 504(2):181–191Google Scholar
  90. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Clarendon Press, OxfordGoogle Scholar
  91. Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579(26):5822–5829PubMedGoogle Scholar
  92. Harley CB, Sherwood SW (1997) Telomerase, checkpoints and cancer. Cancer Surv 29:263–284PubMedGoogle Scholar
  93. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300PubMedGoogle Scholar
  94. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147PubMedGoogle Scholar
  95. Harman D (2009) About “origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009”. Biogerontology 10(6):783PubMedGoogle Scholar
  96. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395PubMedCentralPubMedGoogle Scholar
  97. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858PubMedGoogle Scholar
  98. He L, He X, Lowe SW, Hannon GJ (2007) MicroRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822PubMedGoogle Scholar
  99. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465PubMedGoogle Scholar
  100. Hecht SS (2012) Lung carcinogenesis by tobacco smoke. Int J Cancer 131(12):2724–2732PubMedCentralPubMedGoogle Scholar
  101. Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E, Pennington CALERIE Team (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–48 (Erratum in: JAMA 295(21):2482)Google Scholar
  102. Heydari AR, You S, Takahashi R, Gutsmann-Conrad A, Sarge KD, Richardson A (2000) Age-related alterations in the activation of heat shock transcription factor 1 in rat hepatocytes. Exp Cell Res 256:83–93PubMedGoogle Scholar
  103. Hochfeld WE, Lee S, Rubinsztein DC (2013) Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol Sin 34(5):600–604PubMedCentralPubMedGoogle Scholar
  104. Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411(6835):366–374PubMedGoogle Scholar
  105. Holsboer F (2007) Altersbedingte Erkrankungen: Das Wechselspiel von Veranlagung und Lebensweise. In: Gruss P (ed) Die Zukunft des Alterns, pp 163–191. C.H. Beck, MünchenGoogle Scholar
  106. Holzenberger M, Dupont J, Ducos B, Leneuve P, Géloën A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187PubMedGoogle Scholar
  107. Horcajada MN, Offord E (2012) Naturally plant-derived compounds: role in bone anabolism. Curr Mol Pharmacol 5(2):205–218PubMedGoogle Scholar
  108. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196PubMedGoogle Scholar
  109. Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145PubMedGoogle Scholar
  110. Humphreys V, Martin RM, Ratcliffe B, Duthie S, Wood S, Gunnell D, Collins AR (2007) Age-related increases in DNA repair and antioxidant protection: a comparison of the Boyd Orr Cohort of elderly subjects with a younger population sample. Age Ageing 36(5):521–526PubMedGoogle Scholar
  111. Ibáñez-Ventoso C, Driscoll M (2009) MicroRNAs in C. elegans aging: molecular insurance for robustness? Curr Genomics 10(3):144–153PubMedGoogle Scholar
  112. Jeck WR, Siebold AP, Sharpless NE (2012) Review: a meta-analysis of GWAS and age-associated diseases. Aging Cell 11(5):727–731PubMedCentralPubMedGoogle Scholar
  113. Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37(3):503–517PubMedGoogle Scholar
  114. Jeppesen DK, Bohr VA, Stevnsner T (2011) DNA repair deficiency in neurodegeneration. Prog Neurobiol 94(2):166–200PubMedCentralPubMedGoogle Scholar
  115. Jones QR, Warford J, Rupasinghe HP, Robertson GS (2012) Target-based selection of flavonoids for neurodegenerative disorders. Trends Pharmacol Sci 33(11):602–610PubMedGoogle Scholar
  116. Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111PubMedGoogle Scholar
  117. Jung HJ, Suh Y (2012) MicroRNA in aging: from discovery to biology. Curr Genomics 13(7):548–557PubMedGoogle Scholar
  118. Kaarniranta K, Salminen A, Eskelinen EL, Kopitz J (2009) Heat shock proteins as gatekeepers of proteolytic pathways—implications for age-related macular degeneration (AMD). Ageing Res Rev 8(2):128–139PubMedGoogle Scholar
  119. Kaelin WG Jr, McKnight SL (2013) Influence of metabolism on epigenetics and disease. Cell 153(1):56–69PubMedCentralPubMedGoogle Scholar
  120. Kamileri I, Karakasilioti I, Garinis GA (2012) Nucleotide excision repair: new tricks with old bricks. Trends Genet 28(11):566–573PubMedGoogle Scholar
  121. Kanungo J (2013) DNA-dependent protein kinase and DNA repair: relevance to Alzheimer’s disease. Alzheimers Res Ther 5(2):13PubMedCentralPubMedGoogle Scholar
  122. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464PubMedGoogle Scholar
  123. Kern A, Ackermann B, Clement AM, Duerk H, Behl C (2010) HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans. PLoS One 5(1):e8568PubMedCentralPubMedGoogle Scholar
  124. Kim YJ, Wilson DM 3rd (2012) Overview of base excision repair biochemistry. Curr Mol Pharmacol 5(1):3–13Google Scholar
  125. Kim HS, Patel K, Muldoon-Jacobs K, Bisht KS, Aykin-Burns N, Pennington JD, van der Meer R, Nguyen P, Savage J, Owens KM, Vassilopoulos A, Ozden O, Park SH, Singh KK, Abdulkadir SA, Spitz DR, Deng CX, Gius D (2010) SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1):41–52PubMedCentralPubMedGoogle Scholar
  126. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277(5328):942–946.Google Scholar
  127. Kirkwood TB (2011) Systems biology of ageing and longevity. Philos Trans R Soc Lond B Biol Sci 366(1561):64–70Google Scholar
  128. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408(6809):233–238PubMedGoogle Scholar
  129. Klapper W, Parwaresch R, Krupp G (2001) Telomere biology in human aging and aging syndromes. Mech Ageing Dev 122(7):695–712PubMedGoogle Scholar
  130. Koshland DE Jr (1992) The molecule of the year. Science 258(5090):1861PubMedGoogle Scholar
  131. Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583PubMedGoogle Scholar
  132. Kuro-o M (2012) Klotho in health and disease. Curr Opin Nephrol Hypertens 21(4):362–368PubMedGoogle Scholar
  133. Lamy E, Goetz V, Erlacher M, Herz C, Mersch-Sundermann V (2013) hTERT: another brick in the wall of cancer cells. Mutat Res 752(2):119–128PubMedGoogle Scholar
  134. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedGoogle Scholar
  135. van Leeuwen FW, de Kleijn DP, van den Hurk HH, Neubauer A, Sonnemans MA, Sluijs JA, Köycü S, Ramdjielal RD, Salehi A, Martens GJ, Grosveld FG, Peter J, Burbach H, Hol EM (1998) Frameshift mutants of beta amyloid precursor protein and ubiquitin-B in Alzheimer’s and down patients. Science 279(5348):242–247PubMedGoogle Scholar
  136. Lehmann AR, McGibbon D, Stefanini M (2011) Xeroderma pigmentosum. Orphanet J Rare Dis 6:70PubMedCentralPubMedGoogle Scholar
  137. Li N, Karin M (1999) Is NF-kappaB the sensor of oxidative stress? FASEB J 13(10):1137–1143PubMedGoogle Scholar
  138. Lieber MR, Ma Y, Pannicke U, Schwarz K (2003) Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 4(9):712–720PubMedGoogle Scholar
  139. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCentralPubMedGoogle Scholar
  140. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4PubMedGoogle Scholar
  141. Liscic RM, Breljak D (2011) Molecular basis of amyotrophic lateral sclerosis. Prog Neuropsychopharmacol Biol Psychiatry 35(2):370–372PubMedGoogle Scholar
  142. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512PubMedGoogle Scholar
  143. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217PubMedGoogle Scholar
  144. Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429(6994):883–891PubMedGoogle Scholar
  145. Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11(2):155–161PubMedGoogle Scholar
  146. Marquardt JU, Fischer K, Baus K, Kashyap A, Ma S, Krupp M, Linke M, Teufel A, Zechner U, Strand D, Thorgeirsson SS, Galle PR, Strand S (2013) SIRT6 dependent genetic and epigenetic alterations are associated with poor clinical outcome in HCC patients. Hepatology 58(3):1054–1064Google Scholar
  147. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid \(\upbeta \)-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2(6):a006262PubMedGoogle Scholar
  148. Masui R, Kuramitsu S (2010) Molecular mechanisms of the whole DNA repair system: a comparison of bacterial and eukaryotic systems. J Nucleic Acids 2010:179594PubMedCentralPubMedGoogle Scholar
  149. Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M, Barnard D, Ward WF, Qi W, Ingram DK, de Cabo R (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321PubMedGoogle Scholar
  150. Mattson MP (2009) Roles of the lipid peroxidation product 4-hydroxynonenal in obesity, the metabolic syndrome, and associated vascular and neurodegenerative disorders. Exp Gerontol 44(10):625–633PubMedCentralPubMedGoogle Scholar
  151. Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62(6):670–684PubMedCentralPubMedGoogle Scholar
  152. Ma D, Zhu W, Hu S, Yu X, Yang Y (2013) Association between oxidative stress and telomere length in type 1 and type 2 diabetic patients. J Endocrinol Invest [Epub ahead of print]Google Scholar
  153. McCay CM (2000) Is longevity compatible with optimum growth? Science 77(2000):410–411Google Scholar
  154. McCollum AK, Casagrande G, Kohn EC (2010) Caught in the middle: the role of Bag3 in disease. Biochem J 425:e1–e3Google Scholar
  155. McCord JM, Fridovich I (2013) Superoxide dismutases: you’ve come a long way, baby. Antioxid Redox Signal [Epub ahead of print]Google Scholar
  156. McCord RA, Michishita E, Hong T, Berber E, Boxer LD, Kusumoto R, Guan S, Shi X, Gozani O, Burlingame AL, Bohr VA, Chua KF (2009) SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair. Aging 1(1):109–121Google Scholar
  157. McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22):6049–6055PubMedGoogle Scholar
  158. McGuinness D, McGuinness DH, McCaul JA, Shiels PG (2011) Sirtuins, bioageing, and cancer. J Aging Res 2011:235754PubMedCentralPubMedGoogle Scholar
  159. McKinnon PJ (2012) ATM and the molecular pathogenesis of ataxia telangiectasia. Annu Rev Pathol 7:303–321PubMedGoogle Scholar
  160. Meng F, Yao D, Shi Y, Kabakoff J, Wu W, Reicher J, Ma Y, Moosmann B, Masliah E, Lipton SA, Gu Z (2011) Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation. Mol Neurodegener 6:34PubMedCentralPubMedGoogle Scholar
  161. Merksamer PI, Liu Y, He W, Hirschey MD, Chen D, Verdin E (2013) The sirtuins, oxidative stress and aging: an emerging link. Aging 5(3):144–150Google Scholar
  162. Michael R, Bron AJ (2011) The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci 366(1568):1278–1292PubMedGoogle Scholar
  163. Mocko JB, Kern A, Moosmann B, Behl C, Hajieva P (2010) Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson’s disease. Neurobiol Dis 40(1):120–129PubMedGoogle Scholar
  164. Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17(4):165–172PubMedGoogle Scholar
  165. Moore JK, Haber JE (1996) Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2164–2173PubMedCentralPubMedGoogle Scholar
  166. Moosmann B, Behl C (1999) The antioxidant neuroprotective effects of estrogens and phenolic compounds are independent from their estrogenic properties. Proc Natl Acad Sci U S A 96(16):8867–8872PubMedCentralPubMedGoogle Scholar
  167. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11(10):1407–1435PubMedGoogle Scholar
  168. Moosmann B, Behl C (2008) Mitochondrially encoded cysteine predicts animal lifespan. Aging Cell 7(1):32–46PubMedGoogle Scholar
  169. Morawe T, Hiebel C, Kern A, Behl C (2012) Protein homeostasis aging and Alzheimer’s disease. Mol Neurobiol 46(1):41–54PubMedCentralPubMedGoogle Scholar
  170. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382(6591):536–539PubMedGoogle Scholar
  171. Mostoslavsky R, Chua KF, Lombard DB, Pang WW, Fischer MR, Gellon L, Liu P, Mostoslavsky G, Franco S, Murphy MM, Mills KD, Patel P, Hsu JT, Hong AL, Ford E, Cheng HL, Kennedy C, Nunez N, Bronson R, Frendewey D, Auerbach W, Valenzuela D, Karow M, Hottiger MO, Hursting S, Barrett JC, Guarente L, Mulligan R, Demple B, Yancopoulos GD, Alt FW (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124(2):315–329Google Scholar
  172. Moulson CL, Fong LG, Gardner JM, Farber EA, Go G, Passariello A, Grange DK, Young SG, Miner JH (2007) Increased progerin expression associated with unusual LMNA mutations causes severe progeroid syndromes. Hum Mutat 28(9):882–889PubMedGoogle Scholar
  173. Müller-Esterl W (2011) Biochemie: Eine Einführung für Mediziner und Naturwissenschaftler. Spektrum Akademischer Verlag, 2. AuflageGoogle Scholar
  174. Murabito JM, Yuan R, Lunetta KL (2012) The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. J Gerontol A Biol Sci Med Sci 67(5):470–479PubMedGoogle Scholar
  175. Nauseef WM (1999) The NADPH-dependent oxidase of phagocytes. Proc Assoc Am Physicians 111(5):373–382PubMedGoogle Scholar
  176. Nemoto S, Finkel T (2004) Ageing and the mystery at Arles. Nature 429(6988):149–152PubMedGoogle Scholar
  177. Niccoli T, Partridge L (2012) Ageing as a risk factor for disease. Curr Biol 22(17):R741–752Google Scholar
  178. Niedernhofer LJ (2008) Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mech Ageing Dev 129(7–8):408–415PubMedCentralPubMedGoogle Scholar
  179. De Oliveira RM, Sarkander J, Kazantsev AG, Outeiro TF (2012) SIRT2 as a therapeutic target for age-related disorders. Front Pharmacol 3:82PubMedCentralPubMedGoogle Scholar
  180. Olovnikov AM (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31(4):443–448PubMedGoogle Scholar
  181. Pamplona R, Barja G (2006) Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta 1757(5–6):496–508PubMedGoogle Scholar
  182. Pan MH, Lai CS, Tsai ML, Wu JC, Ho CT (2012) Molecular mechanisms for anti-aging by natural dietary compounds. Mol Nutr Food Res 56(1):88–115PubMedGoogle Scholar
  183. Park SY, Lee JH, Ha M, Nam JW, Kim VN (2009) miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol 16(1):23–29PubMedGoogle Scholar
  184. Passtoors WM, Beekman M, Deelen J, van der Breggen R, Maier AB, Guigas B, Derhovanessian E, van Heemst D, de Craen AJ, Gunn DA, Pawelec G, Slagboom PE (2013) Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 12(1):24–31PubMedGoogle Scholar
  185. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, Cota P, Wittnam JL, Gogol-Doering A, Opitz L, Salinas-Riester G, Dettenhofer M, Kang H, Farinelli L, Chen W, Fischer A (2010) Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328(5979):753–756PubMedGoogle Scholar
  186. Perry JJ, Shin DS, Getzoff ED, Tainer JA (2010) The structural biochemistry of the superoxide dismutases. Biochim Biophys Acta 1804(2):245–262PubMedCentralPubMedGoogle Scholar
  187. Pirooznia SK, Elefant F (2013) Targeting specific HATs for neurodegenerative disease treatment: translating basic biology to therapeutic possibilities. Front Cell Neurosci 7:30PubMedCentralPubMedGoogle Scholar
  188. Poon HF, Vaishnav RA, Getchell TV, Getchell ML, Butterfield DA (2006) Quantitative proteomics analysis of differential protein expression and oxidative modification of specific proteins in the brains of old mice. Neurobiol Aging 27(7):1010–1019PubMedGoogle Scholar
  189. de Pril R, Fischer DF, Maat-Schieman ML, Hobo B, de Vos RA, Brunt ER, Hol EM, Roos RA, van Leeuwen FW (2004) Accumulation of aberrant ubiquitin induces aggregate formation and cell death in polyglutamine diseases. Hum Mol Genet 13(16):1803–1813PubMedGoogle Scholar
  190. Qiu J (2006) Epigenetics: unfinished symphony. Nature 441(7090):143–145PubMedGoogle Scholar
  191. Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ 2nd, Wolf N, Van Remmen H, Richardson A (2007) Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 62(9):932–942PubMedGoogle Scholar
  192. Rao KS (2007) DNA repair in aging rat neurons. Neuroscience 145(4):1330–1340PubMedGoogle Scholar
  193. Razzaque MS (2012) The role of Klotho in energy metabolism. Nat Rev Endocrinol 8(10):579–587PubMedCentralPubMedGoogle Scholar
  194. Romanov GA, Vanyushin BF (1981) Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta 653(2):204–218PubMedGoogle Scholar
  195. Roth GS, Ingram DK, Joseph JA (2007) Nutritional interventions in aging and age-associated diseases. Ann N Y Acad Sci 1114:369–371PubMedGoogle Scholar
  196. Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20(2):126–136PubMedCentralPubMedGoogle Scholar
  197. Schindeldecker M, Stark M, Behl C, Moosmann B (2011) Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity. Mech Ageing Dev 132(4):171–179PubMedGoogle Scholar
  198. Schmidt U, Holsboer F, Rein T (2011) Epigenetic aspects of posttraumatic stress disorder. Dis Markers 30(2–3):77–87PubMedGoogle Scholar
  199. Sebastiani P, Solovieff N, Dewan AT, Walsh KM, Puca A, Hartley SW, Melista E, Andersen S, Dworkis DA, Wilk JB, Myers RH, Steinberg MH, Montano M, Baldwin CT, Hoh J, Perls TT (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7(1):e29848PubMedCentralPubMedGoogle Scholar
  200. Seluanov A, Chen Z, Hine C, Sasahara TH, Ribeiro AA, Catania KC, Presgraves DC, Gorbunova V (2007) Telomerase activity coevolves with body mass not lifespan. Aging Cell 6(1):45–52PubMedCentralPubMedGoogle Scholar
  201. Shay JW, Wright WE (2007) Hallmarks of telomeres in ageing research. J Pathol 211(2):114–123PubMedGoogle Scholar
  202. Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D, Feng T, Wakamatsu E, Benoist C, Koller D, Regev A, ImmGen Consortium (2013) Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc Natl Acad Sci U S A 110(8):2946–2951Google Scholar
  203. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103(23):8703–8708PubMedCentralPubMedGoogle Scholar
  204. Sies H (1986) Biochemistry of oxidative stress. Angewandte Chemie Int Ed 12:1058–1071Google Scholar
  205. Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65(2):184–189PubMedGoogle Scholar
  206. Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36(9):1539–1550PubMedGoogle Scholar
  207. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258PubMedGoogle Scholar
  208. Steves CJ, Spector TD, Jackson SH (2012) Ageing, genes, environment and epigenetics: what twin studies tell us now, and in the future. Age Ageing 41(5):581–586PubMedGoogle Scholar
  209. Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE (2008) Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell 7(5):641–650PubMedCentralPubMedGoogle Scholar
  210. Surova O, Zhivotovsky B (2013) Various modes of cell death induced by DNA damage. Oncogene 32(33):3789–3797PubMedGoogle Scholar
  211. Sykora P, Wilson DM 3rd, Bohr VA (2013) Base excision repair in the mammalian brain: implication for age related neurodegeneration. Mech Ageing Dev 134(10):440–448Google Scholar
  212. Szilard L (1959) On the nature of the aging process. Proc Natl Acad Sci U S A 45(1):30–45PubMedCentralPubMedGoogle Scholar
  213. Tam JH, Pasternak SH (2012) Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci 39(3):286–298PubMedGoogle Scholar
  214. Tammen SA, Friso S, Choi SW (2013) Epigenetics: the link between nature and nurture. Mol Aspects Med 34(4):753–764PubMedGoogle Scholar
  215. Tan Y, Bush JM, Liu W, Tang F (2009) Identification of longevity genes with systems biology approaches. Adv Appl Bioinform Chem 2:49–56PubMedCentralPubMedGoogle Scholar
  216. Tatar M, Khazaeli AA, Curtsinger JW (1997) Chaperoning extended life. Nature 390:30PubMedGoogle Scholar
  217. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–110PubMedGoogle Scholar
  218. Tomás-Loba A, Flores I, Fernández-Marcos PJ, Cayuela ML, Maraver A, Tejera A, Borrás C, Matheu A, Klatt P, Flores JM, Viña J, Serrano M, Blasco MA (2008) Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell 135(4):609–622PubMedGoogle Scholar
  219. Vallabhaneni H, O’Callaghan N, Sidorova J, Liu Y (2013) Defective repair of oxidative base lesions by the DNA glycosylase Nth1 associates with multiple telomere defects. PLoS Genet 9(7):e1003639PubMedCentralPubMedGoogle Scholar
  220. Van Raamsdonk JM, Hekimi S (2012) Superoxide dismutase is dispensable for normal animal lifespan. Proc Natl Acad Sci U S A 109(15):5785–5790Google Scholar
  221. Vanyushin BF, Nemirovsky LE, Klimenko VV, Vasiliev VK, Belozersky AN (1973b) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19(3):138–152Google Scholar
  222. Vanyushin BF, Mazin AL, Vasilyev VK, Belozersky AN (1973a) The content of 5-methylcytosine in animal DNA: the species and tissue specificity. Biochim Biophys Acta 299(3):397–403PubMedGoogle Scholar
  223. Vessoni AT, Filippi-Chiela EC, Menck CF, Lenz G (2013) Autophagy and genomic integrity. Cell Death Differ 20(11):1444–1454PubMedGoogle Scholar
  224. Vilenchik MM, Knudson AG Jr (2000) Inverse radiation dose-rate effects on somatic and germ-line mutations and DNA damage rates. Proc Natl Acad Sci U S A 97(10):5381–5386PubMedCentralPubMedGoogle Scholar
  225. Villalba JM, Alcaín FJ (2012) Sirtuin activators and inhibitors. Biofactors 38(5):349–359PubMedCentralPubMedGoogle Scholar
  226. Villalba JM, de Cabo R, Alcain FJ (2012) A patent review of sirtuin activators: an update. Expert Opin Ther Pat 22(4):355–367PubMedGoogle Scholar
  227. Vyjayanti VN, Rao KS (2006) DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons. Neurosci Lett 393(1):18–22Google Scholar
  228. Waddington CH (2012) The epigenotype. 1942. Int J Epidemiol 41(1):10–13PubMedGoogle Scholar
  229. Weiss EP, Fontana L (2011) Caloric restriction: powerful protection for the aging heart and vasculature. Am J Physiol Heart Circ Physiol 301(4):H1205–H1219PubMedGoogle Scholar
  230. Wilkinson KD, Urban MK, Haas AL (1980) Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. J Biol Chem 255:7529–7532PubMedGoogle Scholar
  231. Witte AV, Fobker M, Gellner R, Knecht S, Flöel A (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106(4):1255–1260PubMedCentralPubMedGoogle Scholar
  232. Wong AS, Cheung ZH (1812) Ip NY (2011) Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta 11:1490–1497Google Scholar
  233. Xiong N, Long X, Xiong J, Jia M, Chen C, Huang J, Ghoorah D, Kong X, Lin Z, Wang T (2012) Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models. Crit Rev Toxicol 42(7):613–632PubMedGoogle Scholar
  234. Xu G, Herzig M, Rotrekl V, Walter CA (2008) Base excision repair, aging and health span. Mech Ageing Dev 129(7–8):366–382PubMedCentralPubMedGoogle Scholar
  235. Yakar S, Adamo ML (2012) Insulin-like growth factor 1 physiology: lessons from mouse models. Endocrinol Metab Clin North Am 41(2):231–247PubMedGoogle Scholar
  236. Yang Z, Klionsky DJ (2010) Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 22:124–131PubMedCentralPubMedGoogle Scholar
  237. Yi C, He C (2013) DNA repair by reversal of DNA damage. Cold Spring Harb Perspect Biol 5(1):a012575Google Scholar
  238. Yin F, Jiang T, Cadenas E (2013) Metabolic triad in brain aging: mitochondria, insulin/IGF-1 signalling and JNK signalling. Biochem Soc Trans 41(1):101–105Google Scholar
  239. Young JC (2010) Mechanisms of the Hsp70 chaperone system. Biochem Cell Biol 88(2):291–300Google Scholar
  240. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266PubMedGoogle Scholar
  241. Zschocke J, Manthey D, Bayatti N, van der Burg B, Goodenough S, Behl C (2002) Estrogen receptor alpha-mediated silencing of caveolin gene expression in neuronal cells. J Biol Chem 277(41):38772–38780PubMedGoogle Scholar
  242. Zuckerman V, Wolyniec K, Sionov RV, Haupt S, Haupt Y (2009) Tumour suppression by p53: the importance of apoptosis and cellular senescence. J Pathol 219(1):3–15PubMedGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute for PathobiochemistryUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany

Personalised recommendations