Skip to main content

Magneto-Rheological Fluid Technology

  • Chapter
  • First Online:
Modern Mechanical Engineering

Abstract

Increasingly, Magneto-rheological (MR) fluid technology has been successfully employed in various applications across various fields. This technology has received significant attention due to its adaptability in the operation of semi-active control systems requiring small power sources. It can potentially deliver highly reliable mechanical operations, managed by a magnetic field as the external operating power. To summarize current magneto-rheological technology, MR fluid can be described as a controllable material that is included in the group of smart materials that have the unique ability to change yield stress. This property can be used in MR devices to generate and control force. The aim of this chapter is to review recent research into MR fluid technology by describing the important factors affecting MR devices design, such as MR fluid properties, operational modes, magnetic materials, and magnetic circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flatau AB, Chong KP (2002) Dynamic smart material and structural system. Eng Struct 24:261–270

    Article  Google Scholar 

  2. Kciuk M, Turczyn R (2006) Properties and application of magnetorheological fluids. J Achieve Mater Manuf Eng 18:127–130

    Google Scholar 

  3. Rinaldi C, Chaves A, Elborai S, He X, Zahn M (2005) Magntic fluid rheology and flows. Curr Opin Colloid Interface Sci 10:141–157

    Article  Google Scholar 

  4. Aslam M, Xiong-liang Y, Zhong-Chao D (2006) Review of magnetorheological (MR) fluids and its applications in vibration control. J Mar Sci Appl 5:17–29

    Google Scholar 

  5. Goldsmith K (1950) Note on the rheological properties of elasto-plastic materials. Br J Appl Phys 1:107–109

    Article  Google Scholar 

  6. Fang C, Zhao BY, Chen LS, Wu Q, Liu N, Hu KA (2005) The effect of the green additive guar gum on the properties of magnetorheological fluid. Smart Mater Struct 14:N1–N5

    Article  Google Scholar 

  7. Nam TH, AHN KK (2009) New approach to designing an MR brake using a small steel roller and MR fluid. J Mech Sci Technol 23:1911–1923

    Article  Google Scholar 

  8. Olabi AG, Grunwald A (2007) Design and application of magneto-rheological fluid. Mater Des 28:2658–2664

    Article  Google Scholar 

  9. Rabiiow J (1948) The magnetic fluid clutch. AIEE Trans 67:1308–1315

    Google Scholar 

  10. Kciuk M, Kciuk S, Turczyn R (2009) Magnetorheological characterisation of carbonyl iron based suspension. J Achiev Mater Manuf Eng 33:135–141

    Google Scholar 

  11. Flatau AB, Chong KP (2002) Dynamic smart material and structural systems. Eng Struct 24:261–270

    Article  Google Scholar 

  12. Ginder MJ, Ginder, Davis CL (1994) Shear stresses in magnetorheological fluid: role of magnetic saturation. Appl Phys Lett 65:3410–3412

    Article  Google Scholar 

  13. Spencer BF Jr, Dyke SJ, Sain MK, Carlson JD (1997) Phenomenological model of a magnetorheological damper. J Eng Mech 123:138–230

    Google Scholar 

  14. Grunwald A, Olabi AG (2008) Design of magneto-rheological (MR) valve. Sens Actuators A 148:211–223

    Article  Google Scholar 

  15. Hagenbuchle M, Liu J (1997) Chain formation and chain dynamics in a dilute magnetorheological fluid. Appl Opt 36:7664–7671

    Article  Google Scholar 

  16. Premalatha SE, Chokkalingam R, Mahendran M (2012) Magneto mechanical properties of iron based MR fluid. Am J Polym Sci 2:50–55

    Article  Google Scholar 

  17. Carlson JD, Jolly MR (2000) M R fluid, foam and elastomer devices. Mechatronics 10:555–569

    Article  Google Scholar 

  18. Jolly MR, Bender JW, Carlson JD (2013) Properties and application of commercial magnetorheological fluids. Thomas Lord Research Centre, Lord Corporation, 110 Lord Drive Cary, NC 27511. http://www.coe.montana.edu/me/faculty/jenkins/Smart%20Structures/prop%20MRF.pdf, 06/03/2013

  19. Jolly MR, Carlson JD, Muñoz BC (996) A model of the behaviour of magnetorheological materials. Smart Mater Struct 5:607–614

    Google Scholar 

  20. Zhu X, Jing X, Cheng L (2012) Magnetorheological fluid dampers: a review on structure design and analysis. J Intell Mater Syst Struct 23:839–873

    Article  Google Scholar 

  21. Mazlan SA, Ekreem NB, Olabi AG (2007) The performance of magnetorheological fluid in squeeze mode. Smart Mater Struct 16:1678-1682

    Google Scholar 

  22. Kim K, Lee C, Koo J (2008) Design and modelling of semi-active squeeze film dampers using magneto-rheological fluids. Smart Mater Struct 17:1–12

    Google Scholar 

  23. Stanway R, Sproston JL, El-Wahed AK (1996) Applications of electro-rheological fluids in vibration control: a survey. Smart Mater Struct 5:464–482

    Article  Google Scholar 

  24. Choi YT, Cho JU, Choi SB, Wereley NM (2005) Constitutive models of electrorheological and magnetorheological fluids using viscometer. Smart Mater Struct 14:1025–1036

    Article  Google Scholar 

  25. Yang G, Spencer BF Jr, Carlson JD, Sain MK (2002) Large-scale MR fluid dampers: modelling and dynamic performance considerations. Eng Struct 24:309–323

    Article  Google Scholar 

  26. Barnes HA (1999) The yield stress—a review or ‘panta roi’—everything flows? J Nonnewton Fluid Mech 81:133–178

    Article  MATH  Google Scholar 

  27. Guo S, Yang S, Pan C (2006) Dynamic modeling of magnetorheological damper behaviors. J Intell Mater Syst Struct 17:3–14

    Article  Google Scholar 

  28. Beaulne M, Mitsoulis E (1997) Creeping motion of a sphere in tubes filled with Herschel–Bulkley fluids. J Nonnewton Fluid Mech 72:55–71

    Article  Google Scholar 

  29. Farjoud A, Cavey R, Ahmadian M (2009) Craft M. Magneto-rheological fluid behavior in squeeze mode. Smart Mater Struct 18:1–7

    Article  Google Scholar 

  30. Spaldin N (2003) Magnetic materials: fundamentals and device applications.University Press, Cambridge

    Google Scholar 

  31. Ginder MJ, Davis CL (1994) Shear stresses in magnetorheological fluid: role of magnetic saturation. Appl Phys Lett 65:3410–3412

    Article  Google Scholar 

  32. Carlson JD (2002) What makes a good MR fluid. J Intell Mater Syst Struct 13:431–435

    Google Scholar 

  33. Boese H, Ehrlich J (2010) Performance of magnetorheological fluids in a novel damper with excellent fail-safe behaviour. J Intell Mater Syst Struct 21:1537–1542

    Article  Google Scholar 

  34. Kraus JD (1991). Electromagnetics. McGraw-Hill, Singapore

    Google Scholar 

  35. G¨okt¨urk HS, Fiske TJ, Kalyon DM (1993) Electric and magnetic properties of a thermoplastic elastomer incorporated with ferromagnetic powders. IEEE Trans Magn 29:4170–4176

    Article  Google Scholar 

  36. Chiriac H, Stoian G (2010) Influence of particle size distributions on magnetorheological fluid performances. J Phys Conf Ser 200:1–4

    Article  Google Scholar 

  37. Song KH, Park BJ, Choi HJ (2009) Effect of magnetic nanoparticle additive on characteristics of magnetorheological fluid. IEEE Trans Magn 45:4045–4048

    Article  Google Scholar 

  38. Japka JE (1988) Microstructure and properties of carbonyl iron powder. JOM 40:18–21

    Article  Google Scholar 

  39. Yang H, Hasegawa D, Sato OT, Takahashi M, Ogawa T (2008) Gram-scale synthesis of monodisperse Fe nanoparticle in one pot. Scripta Mater 58:822–825

    Article  Google Scholar 

  40. Ngatu GT, Wereley NM (2007) Viscometric and sedimentation characterization of bidisperse magnetorheological fluids. IEEE Trans Magn 43:2474–2476

    Article  Google Scholar 

  41. Turczyn R, Kciuk M (2008) preparation and study of model magnetorheological fluids. J Achiev Mater Manuf Eng 27:131–134

    Google Scholar 

  42. Rager A, Krysztafkiewicz A (1997) Effect of electrolytes and surfactants on physicochemical properties of hydrated silicas. Collooids Surf A 125:121–130

    Article  Google Scholar 

  43. Jang IB, Kim HB, Lee JY, You JL, Choi HJ, Jhon MS (2005) Role of organic coating on carbonyl iron suspended particles in magnetorheological fluids. J Appl Phys 97:10Q912

    Google Scholar 

  44. Wu WP, Zhao BY, Wu Q, Chen LS, Hu KA (2006) The strengthening effect of guar gum on the yield stress of magnetorheological fluid. Smart Mater Struct 15:N94–N98

    Article  Google Scholar 

  45. Lim ST, Choi HJ, Jhon MS (2005) Magnetorheological characterization of carbonyl iron-organoclay suspensions. IEEE Trans Magn 41:3745–3747

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul-Ghani Olabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alghamdi, A.A., Lostado, R., Olabi, AG. (2014). Magneto-Rheological Fluid Technology. In: Davim, J. (eds) Modern Mechanical Engineering. Materials Forming, Machining and Tribology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45176-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45176-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45175-1

  • Online ISBN: 978-3-642-45176-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics