Advertisement

Aromaticity of Organic and Inorganic Heterocycles

  • Ferran Feixas
  • Jordi Poater
  • Eduard Matito
  • Miquel SolàEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 38)

Abstract

Heteroaromatic rings are present in many organic molecules. They can be found as part of the core of drugs or agrochemicals and in many important biochemical molecules. The last three centuries have brought important advances in heteroaromatic chemistry. Indeed, the first organic molecules with heteroaromatic rings were already synthesized in the middle of the nineteenth century. Then, the twentieth century witnessed the first inorganic heteroaromatic compound produced in the laboratory. And at the beginning of the present century, the first all-metal heteroaromatic cluster was detected. Here, we discuss the aromaticity of some of these heteroaromatic compounds using different descriptors of aromaticity, with special emphasis in those measures based on electron delocalization properties of the aromatic rings.

Keywords

Aromaticity Heteroaromaticity Nucleus-independent chemical shifts Electronic indices Multicenter electronic indices Harmonic oscillator model of aromaticity Aromatic fluctuation index Para delocalization index 

Notes

Acknowledgments

The following organizations are thanked for financial support: the Ministerio de Ciencia e Innovación (MICINN, project numbers CTQ2011-23156/BQU and CTQ2011-25086/BQU), the Generalitat de Catalunya (project numbers 2009SGR637 and 2014SGR931 and Xarxa de Referència en Química Teòrica i Computacional), and the FEDER fund (European Fund for Regional Development) for the grant UNGI08-4E-003. Excellent service by the Centre de Serveis Científics i Acadèmics de Catalunya (CESCA) is gratefully acknowledged. Support for the research of M. Solà was received through the ICREA Academia 2009 prize for excellence in research funded by the DIUE of the Generalitat de Catalunya. E.M. acknowledges financial support of the EU under the Marie Curie Career Integration grant (PCI09-GA-2011-294240) and the Beatriu de Pinós program from AGAUR for the postdoctoral grant (BP_B_00236). F.F acknowledges financial support from AGAUR for the Beatriu de Pinós postdoctoral Grant (BP_A_00339).

References

  1. 1.
    Hofmann AW (1856) Proc R Soc Lond 8:1–3CrossRefGoogle Scholar
  2. 2.
    Kekulé A (1865) Bull Soc Chim Fr (Paris) 3:98–110Google Scholar
  3. 3.
    Anderson T (1868) Trans R Soc Edinb 25:205–216CrossRefGoogle Scholar
  4. 4.
    Balaban AT, Oniciu DC, Katritzky AR (2004) Chem Rev 104:2777–2812CrossRefGoogle Scholar
  5. 5.
    Stock A, Pohland E (1926) Ber. Dtsch. Chem. Ges. (A and B Series) 59:2215–2223CrossRefGoogle Scholar
  6. 6.
    Marwitz AJV, Matus MH, Zakharov LN, Dixon DA, Liu S-Y (2009) Angew Chem Int Ed 48:973–977CrossRefGoogle Scholar
  7. 7.
    Elliott GP, Roper WR, Waters JM (1982) J Chem Soc Chem Commun 1982:811–813CrossRefGoogle Scholar
  8. 8.
    Li X, Kuznetsov AE, Zhang H-F, Boldyrev A, Wang L-S (2001) Science 291:859–861CrossRefGoogle Scholar
  9. 9.
    Boldyrev AI, Wang L-S (2005) Chem Rev 105:3716–3757CrossRefGoogle Scholar
  10. 10.
    Tsipis CA (2005) Coord Chem Rev 249:2740–2762CrossRefGoogle Scholar
  11. 11.
    Zubarev DY, Averkiev BB, Zhai H-J, Wang L-S, Boldyrev AI (2008) Phys Chem Chem Phys 10:257–267CrossRefGoogle Scholar
  12. 12.
    Feixas F, Matito E, Poater J, Solà M (2013) WIREs Comput Mol Sci 3:105–122CrossRefGoogle Scholar
  13. 13.
    Li X, Zhang H-F, Wang L-S, Kuznetsov AE, Cannon NA, Boldyrev AI (2001) Angew Chem Int Ed 40:1867–1870CrossRefGoogle Scholar
  14. 14.
    Huang X, Zhai H-J, Kiran B, Wang L-S (2005) Angew Chem Int Ed 44:7251–7254CrossRefGoogle Scholar
  15. 15.
    Zhai H-J, Averkiev BB, Zubarev DY, Wang L-S, Boldyrev AI (2007) Angew Chem Int Ed 46:4277–4280CrossRefGoogle Scholar
  16. 16.
    Ugrinov A, Sen A, Reber AC, Qian M, Khanna SN (2008) J Am Chem Soc 130:782–783CrossRefGoogle Scholar
  17. 17.
    Tsipis AC, Kefalidis CE, Tsipis CA (2008) J Am Chem Soc 130:9144–9155CrossRefGoogle Scholar
  18. 18.
    Li X, Wang L-S, Boldyrev AI, Simons J (1999) J Am Chem Soc 121:6033–6038CrossRefGoogle Scholar
  19. 19.
    Castro AC, Audiffred M, Mercero JM, Ugalde JM, Méndez-Rojas MA, Merino G (2012) Chem Phys Lett 519–520:29–33CrossRefGoogle Scholar
  20. 20.
    Katritzky AR, Jug K, Oniciu DC (2001) Chem Rev 101:1421–1449CrossRefGoogle Scholar
  21. 21.
    Cyrański MK (2005) Chem Rev 105:3773–3811CrossRefGoogle Scholar
  22. 22.
    Matito E, Duran M, Solà M (2005) J Chem Phys 122:014109CrossRefGoogle Scholar
  23. 23.
    Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314CrossRefGoogle Scholar
  24. 24.
    Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:400–406CrossRefGoogle Scholar
  25. 25.
    Giambiagi M, de Giambiagi MS, dos Santos CD, de Figueiredo AP (2000) Phys Chem Chem Phys 2:3381–3392CrossRefGoogle Scholar
  26. 26.
    Giambiagi M, de Giambiagi MS, Mundim KC (1990) Struct Chem 1:423–427CrossRefGoogle Scholar
  27. 27.
    Bultinck P, Ponec R, Van Damme S (2005) J Phys Org Chem 18:706–718CrossRefGoogle Scholar
  28. 28.
    Boldyrev AI, Kuznetsov AE (2002) Inorg Chem 41:532–537CrossRefGoogle Scholar
  29. 29.
    Feixas F, Jiménez-Halla JOC, Matito E, Poater J, Solà M (2010) J Chem Theory Comput 6:1118–1130CrossRefGoogle Scholar
  30. 30.
    Feixas F, Matito E, Poater J, Solà M (2008) J Comput Chem 29:1543–1554CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, S. Dapprich, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian 09, Revision A.02 edn. Gaussian, PittsburghGoogle Scholar
  32. 32.
    Baerends EJ, Autschbach J, Bérces A, Bickelhaupt FM, Bo C, de Boeij PL, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH, Fonseca Guerra C, van Gisbergen SJA, Groeneveld JA, Gritsenko OV, Grüning M, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, van Kessel G, Kootstra F, van Lenthe E, McCormack DA, Michalak A, Neugebauer J, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Ros P, Schipper PRT, Schreckenbach G, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL, Ziegler T (2007) ADF2007.01. SCM, AmsterdamGoogle Scholar
  33. 33.
    te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967CrossRefGoogle Scholar
  34. 34.
    Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104:5497–5509CrossRefGoogle Scholar
  35. 35.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251–8260CrossRefGoogle Scholar
  36. 36.
    Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  37. 37.
    Salvador P, Ramos-Cordoba E (2011) APOST-3D. Institut de Química Computacional i Catàlisi. University of Girona, GironaGoogle Scholar
  38. 38.
    Mayer I, Salvador P (2004) Chem Phys Lett 383:368–375CrossRefGoogle Scholar
  39. 39.
    Matito E (2006) ESI-3D: Electron Sharing Indices Program for 3D molecular space partition. Institut de Química Computacional i Catàlisi, University of Girona, GironaGoogle Scholar
  40. 40.
    Matito E, Solà M, Salvador P, Duran M (2007) Faraday Discuss 135:325–345CrossRefGoogle Scholar
  41. 41.
    Morokuma K (1977) Acc Chem Res 10:294–300CrossRefGoogle Scholar
  42. 42.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10CrossRefGoogle Scholar
  43. 43.
    Ziegler T, Rauk A (1979) Inorg Chem 18:1558–1565CrossRefGoogle Scholar
  44. 44.
    Mandado M, Otero N, Mosquera RA (2007) Tetrahedron 62:12204–12210CrossRefGoogle Scholar
  45. 45.
    Cioslowski J, Matito E, Solà M (2007) J Phys Chem A 111:6521–6525CrossRefGoogle Scholar
  46. 46.
    Cyrański MK, Krygowski TM, Katritzky AR, Schleyer PR (2002) J Org Chem 67:1333–1338CrossRefGoogle Scholar
  47. 47.
    Alonso M, Herradón B (2010) J Comput Chem 31:917–928Google Scholar
  48. 48.
    Curutchet C, Poater J, Solà M, Elguero J (2011) J Phys Chem A 115:8571–8577CrossRefGoogle Scholar
  49. 49.
    Wang Y, Wu JI-C, Li Q, Schleyer PR (2010) Org Lett 12:4824–4827CrossRefGoogle Scholar
  50. 50.
    Feixas F, Matito E, Poater J, Solà M (2007) J Phys Chem A 111:4513–4521CrossRefGoogle Scholar
  51. 51.
    Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Solà M (2004) J Org Chem 69:6634–6640CrossRefGoogle Scholar
  52. 52.
    Alonso M, Herradón B (2010) Phys Chem Chem Phys 12:1305–1317CrossRefGoogle Scholar
  53. 53.
    Fernández I, Dyker CA, DeHope A, Donnadieu B, Frenking G, Bertrand G (2009) J Am Chem Soc 131:11875–11881CrossRefGoogle Scholar
  54. 54.
    Poater J, Visser R, Solà M, Bickelhaupt FM (2007) J Org Chem 72:1134–1142CrossRefGoogle Scholar
  55. 55.
    El-Hamdi M, Tiznado W, Poater J, Solà M (2011) J Org Chem 76:8913–8921CrossRefGoogle Scholar
  56. 56.
    Bird CW (1996) Tetrahedron 52:9945–9952CrossRefGoogle Scholar
  57. 57.
    Bird CW (1997) Tetrahedron 53:13111–13118CrossRefGoogle Scholar
  58. 58.
    Poater J, Sodupe M, Bertran J, Solà M (2005) Mol Phys 103:163–173CrossRefGoogle Scholar
  59. 59.
    Cyrański MK, Gilski M, Jaskolski M, Krygowski TM (2003) J Org Chem 68:8607–8613CrossRefGoogle Scholar
  60. 60.
    Huertas O, Poater J, Fuentes-Cabrera M, Orozco M, Solà M, Luque FJ (2006) J Phys Chem A 110:12249–12258CrossRefGoogle Scholar
  61. 61.
    Hückel E (1937) Z Elektrochemie 43:752–788, 827–849Google Scholar
  62. 62.
    Noguera M, Bertran J, Sodupe M (2003) J Phys Chem A 108:333–341CrossRefGoogle Scholar
  63. 63.
    Poater J, García-Cruz I, Illas F, Solà M (2004) Phys Chem Chem Phys 6:314–318CrossRefGoogle Scholar
  64. 64.
    Spaulding LD, Chang CC, Yu N-T, Felton RH (1975) J Am Chem Soc 97:2517–2525CrossRefGoogle Scholar
  65. 65.
    Fuhrhop J-H, Kadish KM, Davis DG (1973) J Am Chem Soc 95:5140–5147CrossRefGoogle Scholar
  66. 66.
    Irikura KK, Beauchamp JL (1991) J Am Chem Soc 113:2767–2768CrossRefGoogle Scholar
  67. 67.
    Jones DH, Hinman AS, Ziegler T (1993) Inorg Chem 32:2092–2095CrossRefGoogle Scholar
  68. 68.
    Scheidt WR, Reed CA (1981) Chem Rev 81:543–555CrossRefGoogle Scholar
  69. 69.
    Feixas F, Swart M, Solà M (2009) Can J Chem 87:1063–1073CrossRefGoogle Scholar
  70. 70.
    Bonomo L, Lehaire M-L, Solari E, Scopelliti R, Floriani C (2001) Angew Chem Int Ed 40:771–774CrossRefGoogle Scholar
  71. 71.
    Feixas F, Matito E, Solà M, Poater J (2010) Phys Chem Chem Phys 12:7126–7137CrossRefGoogle Scholar
  72. 72.
    Swart M (2008) J Chem Theory Comput 4:2057–2066CrossRefGoogle Scholar
  73. 73.
    Cyrański MK, Krygowski TM, Wisiorowski M, Van Eikema Hommes NJR (1998) Schleyer PvR. Angew Chem Int Ed 37:177–180CrossRefGoogle Scholar
  74. 74.
    Jusélius J, Sundholm D (2000) Phys Chem Chem Phys 2:2145–2151CrossRefGoogle Scholar
  75. 75.
    Steiner E, Fowler P (2002) ChemPhysChem 3:114–116CrossRefGoogle Scholar
  76. 76.
    Steiner E, Soncini A, Fowler P (2005) Org Biomol Chem 3:4053–4059CrossRefGoogle Scholar
  77. 77.
    Fliegl H, Sundholm D, Taubert S, Pichierri F (2010) J Phys Chem A 114:7153–7161CrossRefGoogle Scholar
  78. 78.
    Alonso M, Geerlings P, de Proft F (2012) Chem Eur J 18:10916–10928CrossRefGoogle Scholar
  79. 79.
    Islas R, Poater J, Matito E, Solà M (2012) Phys Chem Chem Phys 14:14850–14859CrossRefGoogle Scholar
  80. 80.
    Foroutan-Nejad C, Shahbazian S, Feixas F, Rashidi-Ranjbar P, Solà M (2011) J Comput Chem 32:2422–2431CrossRefGoogle Scholar
  81. 81.
    De Proft F, Fowler PW, Havenith RWA, Schleyer PR, van Lier G, Geerlings P (2004) Chem Eur J 10:940–950CrossRefGoogle Scholar
  82. 82.
    Kraus F, Korber N (2005) Chem Eur J 11:5945–5959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ferran Feixas
    • 1
  • Jordi Poater
    • 2
  • Eduard Matito
    • 2
  • Miquel Solà
    • 2
    Email author
  1. 1.Department of PharmacologyUniversity of California, San DiegoLa JollaUSA
  2. 2.Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGirona, CataloniaSpain

Personalised recommendations