Advertisement

Characterising Heterocyclic Rings Through Quantum Chemical Topology

  • Mark Z. Griffiths
  • Paul L. A. PopelierEmail author
Chapter
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 38)

Abstract

In this chapter, ring structures are characterised through their calculated properties within the theory of quantum chemical topology (QCT). QCT properties of the atoms within a ring can predict the properties at a special point, a so-called ring critical point (RCP). Both the RCP properties and the atomic properties according to QCT successfully distinguish between different ring structures. There are four features of a ring that are responsible for its ring atom properties: (i) the number of heteroatoms within the ring, (ii) the heteroatom’s element, (iii) the ring substituent, and (iv) the substituent site. Interestingly, the four features affect the ring’s properties independently. Therefore, a change in a heteroatom’s element will always affect the ring’s properties the same amount, irrespective of other ring features. This is called ring characteristic orthogonality. For substituent types, it is the atom of the substituent connecting the substituent to the ring that dominates the effect on the ring, rather than the entire substituent itself. Using these relationships between ring features and QCT properties opens up the possibility of improving ring structures in areas such as drug design.

Keywords

Molecular similarity Quantum chemical topology Quantum theory of atoms in molecules Ring critical point Atomic charge Substituent effect 

References

  1. 1.
    Lameijer EW, Kok JN, Back T, Ijzerman AP (2006) J Chem Inf Model 46:553–562CrossRefGoogle Scholar
  2. 2.
    Ertl P (2003) J Chem Inf Comput Sci 43:374–380CrossRefGoogle Scholar
  3. 3.
    Holliday JD, Jelfs SP, Willett P, Gedeck P (2003) J Chem Inf Comput Sci 43:406–411CrossRefGoogle Scholar
  4. 4.
    Lima LMA, Barreiro EJ (2005) Curr Med Chem 12:23–49CrossRefGoogle Scholar
  5. 5.
    Patani GA, LaVoie EJ (1996) Chem Rev 96:3147–3176CrossRefGoogle Scholar
  6. 6.
    Wermuth C-G (1996) Molecular variations based on bioisosteric replacements. In: Wermuth C-G (ed) The practice of medicinal chemistry. Academic, London, pp 202–237Google Scholar
  7. 7.
    Olesen PH (2001) Curr Opin Drug Discov Dev 4:471–478Google Scholar
  8. 8.
    Devereux M, Popelier PLA, McLay IM (2009) J Chem Inf Model 49:1497–1513CrossRefGoogle Scholar
  9. 9.
    Graham JE, Ripley DC, Smith JT, Smith VHJ, Weaver DF (1995) J Mol Struct THEOCHEM 343:105–109CrossRefGoogle Scholar
  10. 10.
    Gisi U, Sierotzki H, Cook A, McCaffery A (2002) Pest Manag Sci 58:859–867CrossRefGoogle Scholar
  11. 11.
    Katritzky A, Rees C (1984) Comprehensive heterocyclic chemistry, vol 5. Pergamon Press, OxfordGoogle Scholar
  12. 12.
    Lehringer A, Nelson DL, Cox MM (2008) Lehninger principles of biochemistry. W. H. Freeman, New YorkGoogle Scholar
  13. 13.
    Liu H, Du DM (2009) Adv Synth Catal 351:489–519CrossRefGoogle Scholar
  14. 14.
    Talley JJ, Brown DL, Carter JS, Graneto MJ, Koboldt CM, Masferrer JL, Perkins WE, Rogers RS, Shaffer AF, Zhang YY (2000) J Med Chem 43:775–777CrossRefGoogle Scholar
  15. 15.
    Yang CY, Meng CL, Liao CL, Wong PYK (2003) Prost Other Lipid Mediat 72:115–130CrossRefGoogle Scholar
  16. 16.
    Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T (2000) New Eng J Med 342:1946–1952CrossRefGoogle Scholar
  17. 17.
    Krygowski TM, Ejsmont K, Stepien BT, Cyranski MK, Poater J, Sola M (2004) J Org Chem 69:6634–6640CrossRefGoogle Scholar
  18. 18.
    Poater J, Sola M, Viglione RG, Zanasi R (2004) J Org Chem 69:7537–7542CrossRefGoogle Scholar
  19. 19.
    Poater J, Fradera X, Duran M, Sola M (2003) Chem Eur J 9:400–406CrossRefGoogle Scholar
  20. 20.
    Sjoberg P, Murray JS, Brinck T, Politzer P (1990) Can J Chem 68:1440–1443CrossRefGoogle Scholar
  21. 21.
    Murray JS, Abu-Awwad F, Politzer P (2000) J Mol Struct THEOCHEM 501:241–250CrossRefGoogle Scholar
  22. 22.
    Poater J, Duran M, Sola M (2004) Int J Quantum Chem 98:361–366CrossRefGoogle Scholar
  23. 23.
    Matta CF, Hernandez-Trujillo J (2003) J Phys Chem A 107:7496–7504CrossRefGoogle Scholar
  24. 24.
    Popelier PLA, Aicken FM (2003) ChemPhysChem 4:824–829CrossRefGoogle Scholar
  25. 25.
    Popelier PLA, Smith PJ (2006) Eur J Med Chem 41:862–873CrossRefGoogle Scholar
  26. 26.
    Liem SY, Popelier PLA, Leslie M (2004) Int J Quantum Chem 99:685–694CrossRefGoogle Scholar
  27. 27.
    Singh NK, Popelier PLA, O’Malley PJ (2006) Chem Phys Lett 426:219–221CrossRefGoogle Scholar
  28. 28.
    Poater J, Fradera X, Sola M, Duran M, Simon S (2003) Chem Phys Lett 369:248–255CrossRefGoogle Scholar
  29. 29.
    Koch U, Popelier P (1995) J Phys Chem 99:9747–9754CrossRefGoogle Scholar
  30. 30.
    Popelier PLA (1999) J Phys Chem A 103:2883–2890CrossRefGoogle Scholar
  31. 31.
    Bader RFW (1990) Atoms in molecules. A quantum theory. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Biegler-Koenig FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317–328CrossRefGoogle Scholar
  33. 33.
    Popelier PLA (1998) Morphy98 – a program written by Popelier PLA with a contribution from Bone RGA, ManchesterGoogle Scholar
  34. 34.
    Biegler-Koenig FW, Schoenbohm J (2002) J Comp Chem 23:1489–1494CrossRefGoogle Scholar
  35. 35.
    Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114CrossRefGoogle Scholar
  36. 36.
    Suresh CH, Koga N, Gadre SR (2000) Organometallics 19:3008–3015CrossRefGoogle Scholar
  37. 37.
    Kroemer RT, Hecht P, Liedl KR (1996) J Comput Chem 17:1296–1308CrossRefGoogle Scholar
  38. 38.
    Lamarche O (2003) Theoretical prediction and application of hydrogen bond and polarity/polarisability descriptors. PhD, Cardiff UniversityGoogle Scholar
  39. 39.
    Platts JA (2000) Phys Chem Chem Phys 2:973–980CrossRefGoogle Scholar
  40. 40.
    Platts JA (2000) Phys Chem Chem Phys 2:3115–3120CrossRefGoogle Scholar
  41. 41.
    Murray JS, Politzer P (1991) J Org Chem 56:6715–6717CrossRefGoogle Scholar
  42. 42.
    Kosov DS, Popelier PLA (2000) J Phys Chem A 104:7339–7345CrossRefGoogle Scholar
  43. 43.
    Kosov DS, Popelier PLA (2000) J Chem Phys 113:3969–3974CrossRefGoogle Scholar
  44. 44.
    Hofinger S, Wendland M (2002) Int J Quantum Chem 86:199–217CrossRefGoogle Scholar
  45. 45.
    Wold S, Sjostrom M, Eriksson L (1998) Partial least squares projections to latent structures (PLS) in chemistry. In: Schleyer P (ed) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, pp 2006–2021Google Scholar
  46. 46.
    Wold S, Sjostrom M, Eriksson L (2001) Chemom Intell Lab Sys 58:109–130CrossRefGoogle Scholar
  47. 47.
    GAUSSIAN03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., PittsburghGoogle Scholar
  48. 48.
    Slee T, Larouche A, Bader RFW (1988) J Phys Chem 92:6219–6227CrossRefGoogle Scholar
  49. 49.
    Mori I, Fonne-Pfister R, Matsunaga S, Tada S, Kimura Y, Iwasaki G, Mano J, Hatano M, Nakano T, Koizumi S, Scheidegger A, Hayakawa K, Ohta D (1995) Plant Physiol 107:719–723Google Scholar
  50. 50.
    Popelier PLA (1994) Chem Phys Lett 228:160–164CrossRefGoogle Scholar
  51. 51.
    Popelier PLA (1996) Comput Phys Commun 93:212–240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Manchester Institute of Biotechnology (MIB)ManchesterUK
  2. 2.School of ChemistryUniversity of ManchesterManchesterUK

Personalised recommendations