Reactivity of Aziridinium Salts in Different Solvents Unraveled by a Combined Theoretical and Experimental Approach

  • Hannelore Goossens
  • Dietmar Hertsen
  • Karen Mollet
  • Saron Catak
  • Matthias D’hooghe
  • Frank De Proft
  • Paul Geerlings
  • Norbert De Kimpe
  • Michel Waroquier
  • Veronique Van SpeybroeckEmail author
Part of the Topics in Heterocyclic Chemistry book series (TOPICS, volume 38)


This chapter focuses on the importance of aziridinium ions as intermediates in organic chemistry. The principal aim is to gain insight into the factors to take into account for the selective synthesis of a variety of functionalized amines via aziridinium salts, such as the nature of the aziridinium ion (ring strain and N- and C-substituents of the aziridine ring), the nucleophile, and the solvent environment. Molecular modeling is used to investigate kinetics, electrostatics, and frontier molecular orbitals of reactions involving intermediate aziridinium ions, such as the nucleophilic ring opening of aziridines, the ring expansion of nitrogen heterocycles, and the ene reactions with triazolinedione.


Aziridinium ions DFT Ring strain Regioselectivity Solvation 



Aziridinium imide intermediate


Charge model 3


Conventional strain energy


Gibbs free coordination solvation energy


Density functional theory


Iterative Hirshfeld


Leaving group


Natural population analysis


Open intermediate


Semi-empirical parameterized model number 3


Quantum mechanics/molecular mechanics




Transition state for proton abstraction


Transition state for addition


Transition state for isomerization



This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen), the Research Board of Ghent University (BOF-GOA), and the IAP-BELSPO program in the frame of IAP 7/05. Computational resources and services used in this work were provided by Ghent University.


  1. 1.
    Tanner D (1994) Chiral aziridines–their synthesis and use in stereoselective transformations. Angew Chem Int Ed Engl 33:599–619Google Scholar
  2. 2.
    Osborn HMI, Sweeney J (1997) The asymmetric synthesis of aziridines. Tetrahedron Asymmetry 8:1693–1715Google Scholar
  3. 3.
    Lindström UM, Somfai P (1998) Aminolysis of vinyl epoxides as an efficient entry to N-H vinylaziridines. Synthesis 1:109–117Google Scholar
  4. 4.
    McCoull WM, Davis FA (2000) Recent synthetic applications of chiral aziridines. Synthesis 10:1347–1365Google Scholar
  5. 5.
    Zwanenburg B, ten Holte P (2001) The synthetic potential of three-membered ring aza-heterocycles. Top Curr Chem 216:93–124Google Scholar
  6. 6.
    Sweeney JB (2002) Aziridines: epoxides’ ugly cousins? Chem Soc Rev 31:247–258Google Scholar
  7. 7.
    Hu XE (2004) Nucleophilic ring opening of aziridines. Tetrahedron 60:2701–2743Google Scholar
  8. 8.
    Watson IDG, Yu LL, Yudin AK (2006) Advances in nitrogen transfer reactions involving aziridines. Acc Chem Res 39:194–206Google Scholar
  9. 9.
    Padwa A, Murphree SS (2006) Epoxides and aziridines–a mini review. ARKIVOC 3:6–33Google Scholar
  10. 10.
    Singh GS, D’hooghe M, De Kimpe N (2007) Synthesis and reactivity of C-heteroatom-substituted aziridines. Chem Rev 107:2080–2135Google Scholar
  11. 11.
    Tsang DS, Yang S, Alphonse FA et al (2008) Stereoselective isomerisation of N-allyl aziridines into geometrically stable Z enamines by using rhodium hydride catalysis. Chem-Eur J 14:886–894Google Scholar
  12. 12.
    De Kimpe N, Verhé R (1983) α-Halogenated imines. In: Patai S, Rappoport Z (eds) Halides, pseudo-halides and azides, vol 1. Wiley, ChichesterGoogle Scholar
  13. 13.
    Helmut S (1999) Nucleophilic ring opening of aziridines. J Prakt Chem/Chem Ztg 341:319–331Google Scholar
  14. 14.
    Dahanukar VH, Zavialov LA (2002) Aziridines and aziridinium ions in the practical synthesis of pharmaceutical intermediates–a perspective. Curr Opin Drug Discov Dev 5:918–927Google Scholar
  15. 15.
    Schneider C (2009) Catalytic, enantioselective ring opening of aziridines. Angew Chem Int Ed 48:2082–2084Google Scholar
  16. 16.
    Roehn U, Becaud J, Mu L et al (2009) Nucleophilic ring opening of activated aziridines: a one-step method for labeling biomolecules with fluorine-18. J Fluor Chem 130:902–912Google Scholar
  17. 17.
    Sureshkumar D, Ganesh V, Vidyarini RS et al (2009) Direct synthesis of functionalized unsymmetrical β-sulfonamido disulfides by tetrathiomolybdate mediated aziridine ring-opening reactions. J Org Chem 74:7958–7961Google Scholar
  18. 18.
    Ottesen LK, Jaroszewski JW, Franzyk H (2010) Ring opening of a resin-bound chiral aziridine with phenol nucleophiles. J Org Chem 75:4983–4991Google Scholar
  19. 19.
    Bornholdt J, Felding J, Kristensen JL (2010) Synthesis of enantiopure 3-substituted morpholines. J Org Chem 75:7454–7457Google Scholar
  20. 20.
    Bornholdt J, Felding J, Clausen RP et al (2010) Ring opening of pymisyl-protected aziridines with organocuprates. Chem-Eur J 16:12474–12480Google Scholar
  21. 21.
    Stanković S, D’hooghe M, Catak S et al (2012) Regioselectivity in the ring opening of non-activated aziridines. Chem Soc Rev 41:643–665, and references cited hereinGoogle Scholar
  22. 22.
    Métro T-X, Duthion B, Pardo DG et al (2010) Rearrangement of β-amino alcohols via aziridiniums: a review. Chem Soc Rev 39:89–102, and references cited hereinGoogle Scholar
  23. 23.
    Acevedo O, Squillacote ME (2008) A new solvent-dependent mechanism for a triazolinedione ene reaction. J Org Chem 73:912–922Google Scholar
  24. 24.
    Wiberg KB (2004) Strain, structure, stability and reactivity. Found Chem 6:65–80Google Scholar
  25. 25.
    Wheeler SE, Houk KN, Schleyer PR et al (2009) A hierarchy of homodesmotic reactions for thermochemistry. J Am Chem Soc 131:2547–2560Google Scholar
  26. 26.
    Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley, New YorkGoogle Scholar
  27. 27.
    Baeyer A (1885) Ueber polyacetylenverbindungen. Ber Dtsch Chem Ges 18:2269–2281Google Scholar
  28. 28.
    Pitzer KS (1937) Thermodynamic functions for molecules having restricted internal rotations. J Chem Phys 5:469–472Google Scholar
  29. 29.
    Pitzer KS (1945) Strain energies of cyclic hydrocarbons. Science 101:672Google Scholar
  30. 30.
    Dunitz J, Schomaker V (1952) The molecular structure of cyclobutane. J Chem Phys 20:1703–1707Google Scholar
  31. 31.
    Westheimer FA (1956) Calculation of the magnitude of steric effects. In: Newman MS (ed) Steric effects in organic chemistry. Wiley, New YorkGoogle Scholar
  32. 32.
    Lewis LL, Turner LL, Salter EA et al (2002) Computation of the conventional strain energy in oxaziridine. J Mol Struct-Theochem 592:161–171Google Scholar
  33. 33.
    Wiberg K, Bader R, Lau C (1987) Theoretical analysis of hydrocarbon properties. 2. Additivity of group properties and the origin of strain energy. J Am Chem Soc 109:1001–1012Google Scholar
  34. 34.
    Dewar M (1984) Chemical implications of sigma-conjugation. J Am Chem Soc 106:669–682Google Scholar
  35. 35.
    Orchin M, Macomber RS, Pinhas AR et al (2005) The vocabulary and concepts of organic chemistry, 2nd edn. Wiley, HobokenGoogle Scholar
  36. 36.
    Cox J (1963) A bond energy scheme–II: strain and conjugation energies in cyclic compounds. Tetrahedron 19:1175–1184Google Scholar
  37. 37.
    Skancke A, Van Vechten D, Liebman JF et al (1996) Strain energy of three-membered rings: a new ultradiagonal definition as applied to silicon- and carbon-containing species. J Mol Struct 376:461–468Google Scholar
  38. 38.
    Bach RD, Dmitrenko O (2006) The effect of carbonyl substitution on the strain energy of small ring compounds and their six-member ring reference compounds. J Am Chem Soc 128:4598–4611Google Scholar
  39. 39.
    Gimarc BM, Zhao M (1997) Strain and resonance energies in main-group homoatomic rings and clusters. Coord Chem Rev 158:385–412Google Scholar
  40. 40.
    Dudev T, Lim C (1998) Ring strain energies from ab initio calculations. J Am Chem Soc 120:4450–4458Google Scholar
  41. 41.
    Magers DH, Davis SR (1999) Ring strain in the oxazetidines. J Mol Struct-Theochem 487:205–210Google Scholar
  42. 42.
    Verevkin SP, Emel’yanenko VN, Pimerzin AA et al (2011) Thermodynamic analysis of strain in the five-membered oxygen and nitrogen heterocyclic compounds. J Phys Chem A 115:1992–2004Google Scholar
  43. 43.
    Smith SA, Hand KE, Love ML et al (2013) Conventional strain energies of azetidine and phosphetane: can density functional theory yield reliable results? J Comput Chem 34:558–565Google Scholar
  44. 44.
    Kenis S, D’hooghe M, Verniest G et al (2011) Straightforward synthesis of 1-alkyl-2-(trifluoromethyl)aziridines starting from 1,1,1-trifluoroacetone. Org Biomol Chem 9:7217–7223Google Scholar
  45. 45.
    D’hooghe M, Van Speybroeck V, Waroquier M et al (2006) Regio- and stereospecific ring opening of 1,1-dialkyl-2-(aryloxymethyl)aziridinium salts by bromide. Chem Commun 1554–1556Google Scholar
  46. 46.
    D’hooghe M, Van Speybroeck V, Van Nieuwenhove A et al (2007) Novel synthesis of 3,4-diaminobutanenitriles and 4-amino-2-butenenitriles from 2-(cyanomethyl)aziridines through intermediate aziridinium salts: an experimental and theoretical approach. J Org Chem 72:4733–4740Google Scholar
  47. 47.
    Yun SY, Catak S, Lee WK et al (2009) Nucleophile-dependent regioselective ring opening of 2-substituted N,N-dibenzylaziridinium ions: bromide versus hydride. Chem Commun 2508–2510Google Scholar
  48. 48.
    Catak S, D’hooghe M, De Kimpe N et al (2010) Intramolecular pi-pi stacking interactions in 2-substituted N,N-dibenzylaziridinium ions and their regioselectivity in nucleophilic ring-opening reactions. J Org Chem 75:885–896Google Scholar
  49. 49.
    Catak S, D’hooghe M, Verstraelen T et al (2010) Opposite regiospecific ring opening of 2-(cyanomethyl)aziridines by hydrogen bromide and benzyl bromide: experimental study and theoretical rationalization. J Org Chem 75:4530–4541Google Scholar
  50. 50.
    D’hooghe M, Catak S, Stanković S et al (2010) Systematic study of halide-induced ring opening of 2-substituted aziridinium salts and theoretical rationalization of the reaction pathways. Eur J Org Chem 2010:4920–4931Google Scholar
  51. 51.
    Cramer CJ, Truhlar DG (1996) Continuum solvation models. In: Tapia O, Bertrán J (eds) Solvent effects and chemical reactivity. Kluwer, DordrechtGoogle Scholar
  52. 52.
    Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001Google Scholar
  53. 53.
    Cossi M, Rega N, Scalmani G et al (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681Google Scholar
  54. 54.
    Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77Google Scholar
  55. 55.
    Van Speybroeck V, Moonen K, Hemelsoet K et al (2006) Unexpected four-membered over six-membered ring formation during the synthesis of azaheterocyclic phosphonates: experimental and theoretical evaluation. J Am Chem Soc 128:8468–8478Google Scholar
  56. 56.
    Catak S, Monard G, Aviyente V et al (2006) Reaction mechanism of deamidation of asparaginyl residues in peptides: effect of solvent molecules. J Phys Chem A 110:8354–8365Google Scholar
  57. 57.
    Catak S, Monard G, Aviyente V et al (2008) Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid. J Phys Chem A 112:8752–8761Google Scholar
  58. 58.
    Catak S, Monard G, Aviyente V et al (2009) Deamidation of asparagine residues: direct hydrolysis versus succinimide-mediated deamidation mechanisms. J Phys Chem A 113:1111–1120Google Scholar
  59. 59.
    Hermosilla L, Catak S, Van Speybroeck V et al (2010) Kinetic and mechanistic study on p-quinodimethane formation in the sulfinyl precursor route for the polymerization of poly(p-phenylenevinylene) (PPV). Macromolecules 43:7424–7433Google Scholar
  60. 60.
    Dedeoglu B, Catak S, Houk KN et al (2010) A theoretical study of the mechanism of the desymmetrization of cyclic meso-anhydrides by chiral amino alcohols. ChemCatChem 2:1122–1129Google Scholar
  61. 61.
    Pliego JR, Riveros JM (2001) The cluster-continuum model for the calculation of the solvation free energy of ionic species. J Phys Chem A 105:7241–7247Google Scholar
  62. 62.
    Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110:2493–2499Google Scholar
  63. 63.
    da Silva EF, Svendsen HF, Merz KM (2009) Explicitly representing the solvation shell in continuum solvent calculations. J Phys Chem A 113:6404–6409Google Scholar
  64. 64.
    Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. ChemPhysChem 10:1125–1134Google Scholar
  65. 65.
    Mora JR, Tosta M, Domínguez RM et al (2007) Joint theoretical and experimental study of the gas-phase elimination kinetics of tert-butyl ester of carbamic, N,N-dimethylcarbamic, N-hydroxycarbamic acids and 1-(tert-butoxycarbonyl)-imidazole. J Phys Org Chem 20:1021–1031Google Scholar
  66. 66.
    Kaur D, Kohli R (2008) Intra and intermolecular hydrogen bonding in formohydroxamic acid. Int J Quantum Chem 108:119–134Google Scholar
  67. 67.
    Hedegard ED, Bendix J, Sauer SPA (2009) Partial charges as reactivity descriptors for nitrido complexes. J Mol Struct-Theochem 913:1–7Google Scholar
  68. 68.
    Parks JM, Guo H, Momany C et al (2009) Mechanism of Hg-C protonolysis in the organomercurial lyase MerB. J Am Chem Soc 131:13278–13285Google Scholar
  69. 69.
    Schwöbel J, Ebert R-U, Kühne R et al (2009) Modeling the H-bond donor strength of –OH, –NH, and –CH sites by local molecular parameters. J Comput Chem 30:1454–1464Google Scholar
  70. 70.
    Cheshmedzhieva D, Ilieva S, Hadjieva B et al (2009) Reactivity of acetanilides in the alkaline hydrolysis reaction: theory vs. experiment. Mol Phys 107:1187–1192Google Scholar
  71. 71.
    Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746Google Scholar
  72. 72.
    Bultinck P, Ayers PW, Fias S et al (2007) Uniqueness and basis set dependence of iterative Hirshfeld charges. Chem Phys Lett 444:205–208Google Scholar
  73. 73.
    Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050Google Scholar
  74. 74.
    Ayers PW, Levy M (2000) Perspective on “density functional approach to the frontier-electron theory of chemical reactivity”. Theor Chem Acc 103:353–360Google Scholar
  75. 75.
    Cromwell NH, Phillips B (1979) The azetidines. Recent synthetic developments. Chem Rev 79:331–358Google Scholar
  76. 76.
    Moore JA, Ayers RS (1983) Azetidines. In: Hassner A (ed) Chemistry of heterocyclic compounds: small ring heterocycles, part 2. Wiley, New YorkGoogle Scholar
  77. 77.
    Davies DE, Storr RC (1984) Azetidines, azetines and azetes. In: Lwowski W (ed) Comprehensive heterocyclic chemistry, vol 7. Pergamon, OxfordGoogle Scholar
  78. 78.
    De Kimpe N (1996) Azetidines, azetines and azetes: monocyclic. In: Padwa A (ed) Comprehensive heterocyclic chemistry II, vol 1. Elsevier, OxfordGoogle Scholar
  79. 79.
    Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62:7213–7256Google Scholar
  80. 80.
    Fraser HL, Floyd MB, Hopper DW (2007) Six-membered ring systems: pyridines and benzo derivates. In: Gribble GW, Joule JA (eds) Progress in heterocyclic chemistry, vol 18. Elsevier, OxfordGoogle Scholar
  81. 81.
    Källström S, Leino R (2008) Synthesis of pharmaceutically active compounds containing a disubstituted piperidine framework. Bioorg Med Chem 16:601–635Google Scholar
  82. 82.
    Felpin FX, Lebreton J (2003) Recent advances in the total synthesis of piperidine and pyrrolidine natural alkaloids with ring-closing metathesis as a key step. Eur J Org Chem 2003:3693–3712Google Scholar
  83. 83.
    Pandey G, Banerjee P, Gadre SR (2006) Construction of enantiopure pyrrolidine ring system via asymmetric [3 + 2]-cycloaddition of azomethine ylides. Chem Rev 106:4484–4517Google Scholar
  84. 84.
    Minatti A, Muniz K (2007) Intramolecular aminopalladation of alkenes as a key step to pyrrolidines and related heterocycles. Chem Soc Rev 36:1142–1152Google Scholar
  85. 85.
    Wolfe JP (2007) Palladium-catalyzed carboetherification and carboamination reactions of gamma-hydroxy- and gamma-aminoalkenes for the synthesis of tetrahydrofurans and pyrrolidines. Eur J Org Chem 2007:571–582Google Scholar
  86. 86.
    Schomaker JM, Bhattacharjee S, Yan J et al (2007) Diastereomerically and enantiomerically pure 2,3-disubstituted pyrrolidines from 2,3-aziridin-1-ols using a sulfoxonium ylide: a one-carbon homologative relay ring expansion. J Am Chem Soc 129:1996–2003Google Scholar
  87. 87.
    Sherman ES, Fuller PH, Kasi D et al (2007) Pyrrolidine and piperidine formation via copper(II) carboxylate-promoted intramolecular carboamination of unactivated olefins: diastereoselectivity and mechanism. J Org Chem 72:3896–3905Google Scholar
  88. 88.
    Sulmon P, De Kimpe N, Schamp N (1985) A novel synthesis of 2-cyano-3,3-dimethylazetidines. Chem Commun 715–716Google Scholar
  89. 89.
    Sulmon P, De Kimpe N, Schamp N et al (1988) Synthesis of azetidines from beta-chloro imines. Tetrahedron 44:3653–3670Google Scholar
  90. 90.
    De Kimpe N, De Smaele D (1995) A convenient synthesis of 3-alkoxyazetidines. Tetrahedron 51:5465–5478Google Scholar
  91. 91.
    Dejaegher Y, Kuzmenok N, Zvonok A et al (2002) The chemistry of azetidin-3-ones, oxetan-3-ones and thietan-3-ones. Chem Rev 102:29–60Google Scholar
  92. 92.
    Van Brabandt W, Dejaegher Y, Van Landeghem R et al (2006) Reduction of 4-(haloalkyl)azetidin-2-ones with LiAlH4 as a powerful method for the synthesis of stereodefined aziridines and azetidines. Org Lett 8:1101–1104Google Scholar
  93. 93.
    Van Brabandt W, Van Landeghem R, De Kimpe N (2006) Ring transformation of 2-(haloalkyl)azetidines into 3,4-disubstituted pyrrolidines and piperidines. Org Lett 8:1105–1108Google Scholar
  94. 94.
    Van Brabandt W, Mangelinckx S, D’hooghe M et al (2009) Synthesis and reactivity of 3-haloazetidines and 3-sulfonyloxyazetidines. Curr Org Chem 13:829–853Google Scholar
  95. 95.
    Fuson RC, Zirkle CL (1948) Ring enlargement by rearrangement of the 1,2-aminochloroalkyl group; rearrangement of 1-ethyl-2-chloromethylpyrrolidine to 1-ethyl-3-chloropiperidine. J Am Chem Soc 70:2760–2762Google Scholar
  96. 96.
    Wilkem J, Kossenjans M, Saak W et al (1997) Synthesis of new chiral bicyclic 3-hydroxypiperidines – highly diastereoselective ring expansion of the azabicyclo[3.3.0]octane system to chiral piperidine derivatives. Liebigs Ann/Recueil 1997:573–579Google Scholar
  97. 97.
    Cossy J, Dumas C, Pardo DG (1997) Synthesis of (-)-pseudoconhydrine through ring enlargement of a l-proline derivative. Synlett 1997:905–906Google Scholar
  98. 98.
    Cossy J, Dumas C, Pardo DG (1997) A short and efficient synthesis of zamifenacin a muscarinic M-3 receptor antagonist. Bioorg Med Chem Lett 7:1343–1344Google Scholar
  99. 99.
    Calvez O, Chiaroni A, Langlois N (1998) Enantioselective synthesis of 2,3-disubstituted piperidines from (S)-methylpyroglutamate. Tetrahedron Lett 39:9447–9450Google Scholar
  100. 100.
    Michel P, Rassat A (2000) An easy access to 2,6-dihydroxy-9-azabicyclo[3.3.1]nonane, a versatile synthon. J Org Chem 65:2572–2573Google Scholar
  101. 101.
    Cossy J, Mirguet O, Pardo DG (2001) Ring expansion: synthesis of the velbanamine piperidine core. Synlett 2001:1575–1577Google Scholar
  102. 102.
    Mena M, Bonjoch J, Pardo DG et al (2006) Ring expansion of functionalized octahydroindoles to enantiopure cis-decahydroquinolines. J Org Chem 71:5930–5935Google Scholar
  103. 103.
    Gaertner VR (1970) Reactions of nucleophiles with 1-tertiary-butyl-3-chloroazetidine and 1-tertiary-butyl-2-chloromethylaziridine. J Org Chem 35:3952–3959Google Scholar
  104. 104.
    Outurquin F, Pannecoucke X, Berthe B et al (2002) Stereocontrolled synthesis of 1,2-dialkyl-4-halopyrrolidines through PhSeX-induced cyclization of secondary homoallylamines. Eur J Org Chem 2002:1007–1014Google Scholar
  105. 105.
    Couty F, Durrat F, Prim D (2003) Highly stereoselective ring expansion of enantiopure alpha-hydroxyalkyl azetidines. Tetrahedron Lett 44:5209–5212Google Scholar
  106. 106.
    Durrat F, Sanchez MV, Couty F et al (2008) Ring expansion of 2-(alpha-hydroxyalkyl)azetidines: a synthetic route to functionalized pyrrolidines. Eur J Org Chem 2008:3286–3297Google Scholar
  107. 107.
    Mangelinckx S, Žukauskaitė A, Buinauskaitė V et al (2008) Synthesis of alkyl 2-(bromomethyl)aziridine-2-carboxylates and alkyl 3-bromoazetidine-3-carboxylates as amino acid building blocks. Tetrahedron Lett 49:6896–6900Google Scholar
  108. 108.
    Žukauskaitė A, Mangelinckx S, Buinauskaitė V et al (2011) Synthesis of new functionalized aziridine-2-and azetidine-3-carboxylic acid derivatives of potential interest for biological and foldameric applications. Amino Acids 41:541–558Google Scholar
  109. 109.
    Stanković S, Catak S, D’hooghe M et al (2011) Synthesis of 3-methoxyazetidines via an aziridine to azetidine rearrangement and theoretical rationalization of the reaction mechanism. J Org Chem 76:2157–2167Google Scholar
  110. 110.
    Stanković S, Goossens H, Catak S et al (2012) Solvent-controlled selective transformation of 2-bromomethyl-2-methylaziridines to functionalized aziridines and azetidines. J Org Chem 77:3181–3190Google Scholar
  111. 111.
    Cheng CC, Seymour CA, Petti MA (1984) Reaction of electrophiles with unsaturated systems – triazolinedione-olefin reactions. J Org Chem 49:2910–2916Google Scholar
  112. 112.
    Orfanopoulos M, Foote CS, Smonou I (1987) Stereochemical dependence of isotope effects in the ene reaction of N-phenyl-1,2,4-triazoline-3,5-dione with isomers of butene-d3. Tetrahedron Lett 28:15–18Google Scholar
  113. 113.
    Elemes Y, Stratakis M, Orfanopoulos M (1989) Reactions of triazolinediones with cis-alkenes. A highly regioselective ene reaction. Tetrahedron Lett 30:6903–6906Google Scholar
  114. 114.
    Orfanopoulos M, Elemes Y, Stratakis M (1990) Reactions of triazolinedione with alkenes. A remarkable geminal selectivity. Tetrahedron Lett 31:5775–5778Google Scholar
  115. 115.
    Chen JS, Houk KN, Foote CS (1997) The nature of the transition structures of triazolinedione ene reactions. J Am Chem Soc 119:9852–9855Google Scholar
  116. 116.
    Seymour CA, Greene FD (1980) Mechanism of triazolinedione-olefin reactions – ene and cycloaddition. J Am Chem Soc 102:6384–6385Google Scholar
  117. 117.
    Smonou I, Orfanopoulos M, Foote CS (1988) Reaction of 4-phenyl-1,2,4-triazoline-3,5-dione with substituted indenes. Tetrahedron Lett 29:2769–2772Google Scholar
  118. 118.
    Orfanopoulos M, Smonou I, Foote CS (1990) Intermediates in the ene reactions of singlet oxygen and N-phenyl-1,2,4-triazoline-3,5-dione with olefins. J Am Chem Soc 112:3607–3614Google Scholar
  119. 119.
    Smonou I, Khan S, Foote CS et al (1995) Reactions of phenyltriazolinedione with alkenes – stereochemistry of methanol adducts to aziridinium imide intermediates. J Am Chem Soc 117:7081–7087Google Scholar
  120. 120.
    Nelsen SF, Kapp DL (1985) Direct observation of the aziridinium imide intermediates in the reaction of biadamantylidene with triazolinediones. J Am Chem Soc 107:5548–5549Google Scholar
  121. 121.
    Squillacote M, Mooney M, De Felippis J (1990) An aziridinium imide intermediate in the ene reaction of trans-cycloheptene and N-methyl-1,2,4-triazoline-3,5-dione. J Am Chem Soc 112:5364–5365Google Scholar
  122. 122.
    Poon THW, Park SH, Elemes Y et al (1995) Reaction of N-substituted 1,2,4-triazoline-3,5-diones and trans-cyclooctene. Direct observation of an aziridinium imide. J Am Chem Soc 117:10468–10473Google Scholar
  123. 123.
    Orfanopoulos M, Stratakis M, Elemes Y et al (1991) Do rotational barriers dictate the regioselectivity in the ene reactions of singlet oxygen and triazolinedione with alkenes? J Am Chem Soc 113:3180–3181Google Scholar
  124. 124.
    Elemes Y, Stratakis M, Orfanopoulos M (1997) An interplay in the regioselectivity induced by non bonding interactions, in the ene reactions of singlet oxygen and triazolinediones with tetrasubstituted alkenes. Tetrahedron Lett 38:6437–6440Google Scholar
  125. 125.
    Hoye TR, Bottorff KJ, Caruso AJ et al (1980) Regio- and stereoselectivity in the ene reaction of N-phenyl-1,2,4-triazoline-3,5-dione with α, β-unsaturated carbonyl substrates. J Org Chem 45:4287–4292Google Scholar
  126. 126.
    Winget P, Thompson JD, Xidos JD et al (2002) Charge model 3: a class IV charge model based on hybrid density functional theory with variable exchange. J Phys Chem A 106:10707–10717Google Scholar
  127. 127.
    Roubelakis MM, Vougioukalakis GC, Angelis YS et al (2006) Solvent-dependent changes in the ene reaction of RTAD with alkenes: the cyclopropyl group as a mechanistic probe. Org Lett 8:39–42Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hannelore Goossens
    • 1
  • Dietmar Hertsen
    • 1
  • Karen Mollet
    • 2
  • Saron Catak
    • 1
    • 3
  • Matthias D’hooghe
    • 2
  • Frank De Proft
    • 4
  • Paul Geerlings
    • 4
  • Norbert De Kimpe
    • 2
  • Michel Waroquier
    • 1
  • Veronique Van Speybroeck
    • 1
    Email author
  1. 1.Center for Molecular ModelingGhent UniversityZwijnaardeBelgium
  2. 2.Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  3. 3.Department of ChemistryBogaziçi UniversityIstanbulTurkey
  4. 4.Research group of General ChemistryVrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations