Advertisement

Data Mining

Chapter

Abstract

Recommendation systems find and summarize patterns in the structure of some data or in how we visit that data. Such summarizing can be implemented by data mining algorithms. While the rest of this book focuses specifically on recommendation systems in software engineering, this chapter provides a more general tutorial introduction to data mining.

Keywords

Random Forest Association Rule Recommendation System Anomaly Detector Term Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993). DOI 10.1145/170035.170072Google Scholar
  2. 2.
    Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6(1), 37–66 (1991). DOI 10.1023/A:1022689900470Google Scholar
  3. 3.
    Boley, D.: Principal direction divisive partitioning. Data Min. Knowl. Discov. 2(4), 325–344 (1998). DOI 10.1023/A:1009740529316CrossRefGoogle Scholar
  4. 4.
    Bradley, P.S., Fayyad, U.M., Reina, C.: Scaling clustering algorithms to large databases. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 9–15 (1998)Google Scholar
  5. 5.
    Brady, A., Menzies, T.: Case-based reasoning vs parametric models for software quality optimization. In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 3:1–3:10 (2010). DOI 10.1145/1868328.1868333Google Scholar
  6. 6.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, FL (1984)zbMATHGoogle Scholar
  7. 7.
    Breimann, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). DOI 10.1023/A:1010933404324CrossRefGoogle Scholar
  8. 8.
    Catlett, J.: Inductive learning from subsets, or, Disposal ofexcess training data considered harmful. In: Proceedings of the Australian Workshop on Knowledge Acquisition forKnowledge-Based Systems, pp. 53–67 (1991)Google Scholar
  9. 9.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput. Surv. 41, 15:1–15:58 (2009). DOI 10.1145/1541880.1541882Google Scholar
  10. 10.
    Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Trans. Comput. 23(11), 1179–1185 (1974). DOI 10.1109/T-C.1974.223827zbMATHCrossRefGoogle Scholar
  11. 11.
    Corazza, A., Di Martino, S., Ferrucci, F., Gravino, C., Sarro, F., Mendes, E.: How effective is tabu search to configure support vector regression for effort estimation? In: Proceedings of the International Conference on Predictor Models in Software Engineering, pp. 4:1–4:10 (2010). DOI 10.1145/1868328.1868335Google Scholar
  12. 12.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). DOI 10.1023/A:1022627411411zbMATHGoogle Scholar
  13. 13.
    Deerwester, S., Dumais, S., Furnas, G., Landauer, T., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990). DOI 10.1002/(SICI)1097-4571(199009)41:6⟨391::AID-ASI1⟩3.0.CO;2-9CrossRefGoogle Scholar
  14. 14.
    Dejaeger, K., Verbeke, W., Martens, D., Baesens, B.: Data mining techniques for software effort estimation: A comparative study. IEEE Trans. Software Eng. 38, 375–397 (2012). DOI 10.1109/TSE.2011.55CrossRefGoogle Scholar
  15. 15.
    Domingos, P., Pazzani, M.J.: On the optimality of the simple Bayesian classifier under zero-one loss. Mach. Learn. 29(2–3), 103–130 (1997). DOI 10.1023/A:1007413511361zbMATHCrossRefGoogle Scholar
  16. 16.
    Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Proceedings of the International Conference on Machine Learning, pp. 194–202 (1995)Google Scholar
  17. 17.
    Durstenfeld, R.: Algorithm 235: Random permutation. Comm. ACM 7(7), 420 (1964). DOI 10.1145/364520.364540CrossRefGoogle Scholar
  18. 18.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  19. 19.
    Farnstrom, F., Lewis, J., Elkan, C.: Scalability for clustering algorithms revisited. SIGKDD Explor. Newslett. 2(1), 51–57 (2000). DOI 10.1145/360402.360419CrossRefGoogle Scholar
  20. 20.
    Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 1022–1029 (1993)Google Scholar
  21. 21.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). DOI 10.1006/jcss.1997.1504zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Gama, J., Pinto, C.: Discretization from data streams: Applications to histograms and data mining. In: Proceedings of the ACM SIGAPP Symposium on Applied Computing, pp. 662–667 (2006). DOI 10.1145/1141277.1141429Google Scholar
  23. 23.
    Garcia, S., Derrac, J., Cano, J.R., Herrera, F.: Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012). DOI 10.1109/TPAMI.2011.142CrossRefGoogle Scholar
  24. 24.
    Gupta, C., Grossman, R.: GenIc: A single pass generalized incremental algorithm for clustering. In: Proceedings of the SIAM International Conference on Data Mining, pp. 147–153 (2004)Google Scholar
  25. 25.
    Hall, M.A., Holmes, G.: Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15(6), 1437–1447 (2003). DOI 10.1109/TKDE.2003.1245283CrossRefGoogle Scholar
  26. 26.
    Hand, D.J.: Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006). DOI 10.1214/088342306000000060zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14(3), 515–516 (1968). DOI 10.1109/TIT.1968.1054155CrossRefGoogle Scholar
  28. 28.
    Hedges, L.V., Olkin, I.: Nonparametric estimators of effect size in meta-analysis. Psychol. Bull. 96(3), 573–580 (1984)CrossRefGoogle Scholar
  29. 29.
    Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010). DOI 10.1016/j.patrec.2009.09.011CrossRefGoogle Scholar
  30. 30.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Comput. Surv. 31(3), 264–323 (1999). DOI 10.1145/331499.331504CrossRefGoogle Scholar
  31. 31.
    Kampenes, V.B., Dybå, T., Hannay, J.E., Sjøberg, D.I.K.: A systematic review of effect size in software engineering experiments. Inform. Software Tech. 49(11–12), 1073–1086 (2007). DOI 10.1016/j.infsof.2007.02.015CrossRefGoogle Scholar
  32. 32.
    Knuth, D.E.: The Art of Computer Programming, vol. 2: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Boston, MA (1998)Google Scholar
  33. 33.
    Kocaguneli, E., Menzies, T., Bener, A., Keung, J.: Exploiting the essential assumptions of analogy-based effort estimation. IEEE Trans. Software Eng. 28(2), 425–438 (2012a). DOI 10.1109/TSE.2011.27CrossRefGoogle Scholar
  34. 34.
    Kocaguneli, E., Menzies, T., Keung, J.: On the value of ensemble effort estimation. IEEE Trans. Software Eng. 38(6), 1403–1416 (2012b). DOI 10.1109/TSE.2011.111CrossRefGoogle Scholar
  35. 35.
    Kocaguneli, E., Menzies, T., Keung, J., Cok, D., Madachy, R.: Active learning and effort estimation: Finding the essential content of software effort estimation data. IEEE Trans. Software Eng. 39(8), 1040–1053 (2013). DOI 10.1109/TSE.2012.88CrossRefGoogle Scholar
  36. 36.
    Kohavi, R.: Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 202–207 (1996)Google Scholar
  37. 37.
    Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997). DOI 10.1016/S0004-3702(97)00043-XzbMATHCrossRefGoogle Scholar
  38. 38.
    Levina, E., Bickel, P.J.: Maximum likelihood estimation of instrinsic dimension. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 777–784. MIT Press, Cambridge, MA (2005)Google Scholar
  39. 39.
    McCallum, A., Nigam, K., Ungar, L.H.: Efficient clustering of high-dimensional datasets with application to reference matching. In: Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 169–178 (2000). DOI 10.1145/347090.347123Google Scholar
  40. 40.
    Menzies, T., Butcher, A., Cok, D., Marcus, A., Layman, L., Shull, F., Turhan, B., Zimmermann, T.: Local vs. global lessons for defect prediction and effort estimation. IEEE Trans. Software Eng. 39(6), 822–834 (2013). DOI 10.1109/TSE.2012.83Google Scholar
  41. 41.
    Menzies, T., Turhan, B., Bener, A., Gay, G., Cukic, B., Jiang, Y.: Implications of ceiling effects in defect predictors. In: Proceedings of the International Workshop on Predictor Models in Software Engineering (2008). DOI 10.1145/1370788.1370801Google Scholar
  42. 42.
    Minku, L.L., Yao, X.: DDD: A new ensemble approach for dealing with concept drift. IEEE Trans. Knowl. Data Eng. 24(4), 619–633 (2012). DOI 10.1109/TKDE.2011.58CrossRefGoogle Scholar
  43. 43.
    Mittas, N., Angelis, L.: Ranking and clustering software cost estimation models through a multiple comparisons algorithm. IEEE Trans. Software Eng. 39(4), 537–551 (2012). DOI 10.1109/TSE.2012.45CrossRefGoogle Scholar
  44. 44.
    Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Proceedings of the ACM/IEEE International Conference on Software Engineering, pp. 452–461 (2006). DOI 10.1145/1134285.1134349Google Scholar
  45. 45.
    Pearson, K.: I. mathematical contributions to the theory of evolution—VII. on the correlation of characters not quantitatively measurable. Phil. Trans. Roy. Soc. Lond. Ser. A 195, 1–47 & 405 (1900)Google Scholar
  46. 46.
    Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. Phil. Mag. 2(11), 559–572 (1901). DOI 10.1080/14786440109462720Google Scholar
  47. 47.
    Peters, F., Menzies, T., Gong, L., Zhang, H.: Balancing privacy and utility in cross-company defect prediction. IEEE Trans. Software Eng. 39(8), 1054–1068 (2013). DOI 10.1109/TSE.2013.6CrossRefGoogle Scholar
  48. 48.
    Platt, J.C.: FastMap, MetricMap, and Landmark MDS are all Nyström algorithms. In: Proceedings of the International Workshop on Artificial Intelligence and Statistics, pp. 261–268 (2005)Google Scholar
  49. 49.
    Porter, M.F.: An algorithm for suffix stripping. Program Electron. Libr. Inform. Syst. 14(3), 130–137 (1980). DOI 10.1108/eb046814CrossRefGoogle Scholar
  50. 50.
    Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)Google Scholar
  51. 51.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs, NJ (2003)Google Scholar
  52. 52.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Englewood Cliffs, NJ (2009)Google Scholar
  53. 53.
    Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3), 507–512 (1974)zbMATHCrossRefGoogle Scholar
  54. 54.
    Sculley, D.: Web-scale k-means clustering. In: Proceedings of the International Conference on the World Wide Web, pp. 1177–1178 (2010). DOI 10.1145/1772690.1772862Google Scholar
  55. 55.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948a)zbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 623–656 (1948b)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San Francisco, CA (2011)Google Scholar
  58. 58.
    Yang, Y., Webb, G.I.: Discretization for naive-Bayes learning: Managing discretization bias and variance. Mach. Learn. 74(1), 39–74 (2009). DOI 10.1007/s10994-008-5083-5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Lane Department of Computer Science and Electrical EngineeringWest Virginia UniversityWVUSA

Personalised recommendations