Abstract
The Simplified Lesk Algorithm (SLA) is frequently used for word sense disambiguation. It disambiguates by calculating the overlap of a set of dictionary definitions (senses) and the context words. The algorithm is simple and fast, but it has relatively low accuracy. We propose simple strategies for the context window selection that improve the performance of the SLA: (1) constructing the window only with words that have an overlap with some sense of the target word, (2) excluding the target word itself from matching, and (3) avoiding repetitions in the context window. This paper describes the corresponding experiments. Comparison with other more complex knowledge-based algorithms is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)
Buscaldi, D., Rosso, P., Masulli, F.: Finding predominant word senses in untagged text. In: Workshop Senseval-3, Proc. of ACL, ACL 2004, pp. 77–82. Association for Computational Linguistics (2004)
Carpuat, M., Shen, Y., Yu, X., Wu, D.: Toward integrating word sense and entity disambiguation into statistical machine translation. In: Proc. of IWSLT, IWSLT 2006, pp. 37–44 (2006)
Chan, Y.S., Ng, H.T.: Word sense disambiguation improves statistical machine translation. In: Proc. of ACL, ACL 2007, pp. 33–40 (2007)
Kilgarriff, A., Rosenzweig, J.: Framework and results for english SENSEVAL. Computers and the Humanities 34(1-2), 15–48 (2000)
Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proc. of SIGDOC, SIGDOC 1986, pp. 24–26. ACM, New York (1986)
McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in untagged text. In: Proc. of ACL, ACL 2004, pp. 280–287. Association for Computational Linguistics, Stroudsburg (2004)
Mihalcea, R.: Knowledge-based methods for WSD. In: Word Sense Disambiguation: Algorithms and Applications, Text, Speech and Language Technology, pp. 107–132. Springer, Dordrecht (2006)
Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proc. of CIKM, CIKM 2007, pp. 233–242. ACM, New York (2007)
Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38, 39–41 (1995)
Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41, 10:1–10:69 (2009)
Navigli, R., Lapata, M.: An experimental study of graph connectivity for unsupervised word sense disambiguation. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 678–692 (2010)
Palmer, M., Fellbaum, C., Cotton, S., Delfs, L., Dang, H.T.: English tasks: All-words and verb lexical sample (2001)
Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 241–257. Springer, Heidelberg (2003)
Pinto, D., Vilario, D., Balderas, C., Tovar, M., Beltran, B.: Evaluating n-gram models for a bilingual word sense disambiguation task. Computación y Sistemas 15(2) (2011)
Sinha, R., Mihalcea, R.: Unsupervised graph-based word sense disambiguation using measures of word semantic similarity. In: Proc. of ICSC, ICSC 2007, pp. 363–369 (2007)
Snyder, B., Palmer, M.: The English all-words task (2004)
Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proc. of EMNLP, EMNLP 2000, pp. 63–70. ACL, PA (2000)
Vasilescu, F., Langlais, P., Lapalme, G.: Evaluating variants of the lesk approach for disambiguating words. In: Proc. of LREC, LREC 2004, pp. 633–636. Lisbon, Portugal (May 2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Viveros-Jiménez, F., Gelbukh, A., Sidorov, G. (2013). Simple Window Selection Strategies for the Simplified Lesk Algorithm for Word Sense Disambiguation. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45114-0_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-45114-0_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45113-3
Online ISBN: 978-3-642-45114-0
eBook Packages: Computer ScienceComputer Science (R0)