Skip to main content

Simple Window Selection Strategies for the Simplified Lesk Algorithm for Word Sense Disambiguation

  • Conference paper
Advances in Artificial Intelligence and Its Applications (MICAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8265))

Included in the following conference series:

Abstract

The Simplified Lesk Algorithm (SLA) is frequently used for word sense disambiguation. It disambiguates by calculating the overlap of a set of dictionary definitions (senses) and the context words. The algorithm is simple and fast, but it has relatively low accuracy. We propose simple strategies for the context window selection that improve the performance of the SLA: (1) constructing the window only with words that have an overlap with some sense of the target word, (2) excluding the target word itself from matching, and (3) avoiding repetitions in the context window. This paper describes the corresponding experiments. Comparison with other more complex knowledge-based algorithms is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambiguation using WordNet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276, pp. 136–145. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Buscaldi, D., Rosso, P., Masulli, F.: Finding predominant word senses in untagged text. In: Workshop Senseval-3, Proc. of ACL, ACL 2004, pp. 77–82. Association for Computational Linguistics (2004)

    Google Scholar 

  3. Carpuat, M., Shen, Y., Yu, X., Wu, D.: Toward integrating word sense and entity disambiguation into statistical machine translation. In: Proc. of IWSLT, IWSLT 2006, pp. 37–44 (2006)

    Google Scholar 

  4. Chan, Y.S., Ng, H.T.: Word sense disambiguation improves statistical machine translation. In: Proc. of ACL, ACL 2007, pp. 33–40 (2007)

    Google Scholar 

  5. Kilgarriff, A., Rosenzweig, J.: Framework and results for english SENSEVAL. Computers and the Humanities 34(1-2), 15–48 (2000)

    Article  Google Scholar 

  6. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to tell a pine cone from an ice cream cone. In: Proc. of SIGDOC, SIGDOC 1986, pp. 24–26. ACM, New York (1986)

    Google Scholar 

  7. McCarthy, D., Koeling, R., Weeds, J., Carroll, J.: Finding predominant word senses in untagged text. In: Proc. of ACL, ACL 2004, pp. 280–287. Association for Computational Linguistics, Stroudsburg (2004)

    Google Scholar 

  8. Mihalcea, R.: Knowledge-based methods for WSD. In: Word Sense Disambiguation: Algorithms and Applications, Text, Speech and Language Technology, pp. 107–132. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  9. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: Proc. of CIKM, CIKM 2007, pp. 233–242. ACM, New York (2007)

    Google Scholar 

  10. Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38, 39–41 (1995)

    Article  Google Scholar 

  11. Navigli, R.: Word sense disambiguation: A survey. ACM Comput. Surv. 41, 10:1–10:69 (2009)

    Google Scholar 

  12. Navigli, R., Lapata, M.: An experimental study of graph connectivity for unsupervised word sense disambiguation. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 678–692 (2010)

    Article  Google Scholar 

  13. Palmer, M., Fellbaum, C., Cotton, S., Delfs, L., Dang, H.T.: English tasks: All-words and verb lexical sample (2001)

    Google Scholar 

  14. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic relatedness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS, vol. 2588, pp. 241–257. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Pinto, D., Vilario, D., Balderas, C., Tovar, M., Beltran, B.: Evaluating n-gram models for a bilingual word sense disambiguation task. Computación y Sistemas 15(2) (2011)

    Google Scholar 

  16. Sinha, R., Mihalcea, R.: Unsupervised graph-based word sense disambiguation using measures of word semantic similarity. In: Proc. of ICSC, ICSC 2007, pp. 363–369 (2007)

    Google Scholar 

  17. Snyder, B., Palmer, M.: The English all-words task (2004)

    Google Scholar 

  18. Toutanova, K., Manning, C.D.: Enriching the knowledge sources used in a maximum entropy part-of-speech tagger. In: Proc. of EMNLP, EMNLP 2000, pp. 63–70. ACL, PA (2000)

    Google Scholar 

  19. Vasilescu, F., Langlais, P., Lapalme, G.: Evaluating variants of the lesk approach for disambiguating words. In: Proc. of LREC, LREC 2004, pp. 633–636. Lisbon, Portugal (May 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Viveros-Jiménez, F., Gelbukh, A., Sidorov, G. (2013). Simple Window Selection Strategies for the Simplified Lesk Algorithm for Word Sense Disambiguation. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Artificial Intelligence and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8265. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45114-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45114-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45113-3

  • Online ISBN: 978-3-642-45114-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics