Abstract
A possible solution for the current rate of animal extinction in the world is the use of new technologies in their monitoring in order to tackle problems in the reduction of their populations in a timely manner. In this work we present a system for the identification of the Turdus migratorius bird species based on their singing. The core of the system is based on turn-level features extracted from the audio signal of the bird songs. These features were adapted from the recognition of human emotion in speech, which are based on Support Vector Machines. The resulting system is a prototype module of acoustic identification of birds which goal is to monitor birds in their environment, and, in the future, estimate their populations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bogert, B., Healy, M., Tukey, J.: The quefrency alanysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe-cracking. In: Rosenblatt, E.M. (ed.) Symposium on Time Series Analysis, ch. 15, pp. 209–243 (1963)
Briggs, F., Raich, R., Fern, X.Z.: Audio classification of bird species: A statistical manifold approach. In: Ninth IEEE International Conference on Data Mining, ICDM 2009, pp. 51–60 (2009)
Perrins, C.: The new encyclopedia of birds (2011)
Burnie, D.: Animal (2003)
Semarnat. Secretaría de Medio Ambiente y Recursos Naturales. Norma oficial mexicana nom-059-semarnat-2010 (2010)
Mayr, E.: The number of species of birds, vol. 63 (1946)
González, G.F., Gómez de Silva, H.: Especies endmicas: riqueza, patrones de distribucin y retos para su conservacin, p. 150 (2003)
Fagerlund, S.: Bird species recognition using support vector machines. EURASIP J. Appl. Signal Process. (1), 64 (2007)
Glotin, H., Clark, C., Lecun, Y., Dugan, P., Halkais, X., Seuer, J. (eds.): The1st Ingternational Workshop on Machine Learning for Bioacoustics (2013)
Sosa-López, J.R., Gordillo-Martínez, A.: Digitalización de la biblioteca de sonidos naturales del museo de zoología, facultad de ciencias. Universidad nacional autnoma de México (2010)
Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A.: Bird species recognition combining acoustic and sequence modeling. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 341–344 (2011)
Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A., Ferrer, L.: Acoustic front-end optimization for bird species recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, pp. 293–296 (2010)
Harma, A.: Automatic identification of bird species based on sinusoidal modeling of syllables. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 5, pp. 545–548 (2003)
Lee, C.H., Lee, Y.K., Huang, R.Z.: Automatic recognition of bird songs using cepstral coefficients. Journal of Information Technology and Applications (1), 17–23 (2006)
BirdLife International. Threantened birds of the world. Lynx Editions y Birdlife International (2000)
Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., DeSante, D.F., Milan, B.: Manual de métodos para el monitoreo de aves terrestres, vol. (45). Pacific Aouthwest Research Stattion, Forest Service, U.S. Departament of Agriculture (1996)
Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., Ho, K.C.: Bird classification algorithms: theory and experimental results. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2004, pp. 289–292 (2004)
McIlraith, A.L., Card, H.C.: Birdsong recognition using backpropagation and multivariate statistics. IEEE Transactions on Signal Processing 45(11), 2740–2748 (1997)
Milanovic, S., Lukac, Z., Domazetovic, A.: One solution of speech activity detection. In: Conference on Telecommunications ETRAN (1999)
Navarro-Singüenza, Sánchez-González, L.: La diversidad de Aves, vol. (24-56). CIPAMEX/CONABIO/NFWF (2003)
Pikrakis, A., Giannakopoulos, T., Theodoridis, S.: An overview of speech/music discrimination techniques in the context of audio recordings. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments. SCI, vol. 120, pp. 81–102. Springer, Heidelberg (2008)
Schuller, B.: Voice and speech analysis in search of states and traits. In: Gevers, T., Salah, A.A. (eds.) Computer Analysis of Human Behavior, pp. 227–253 (2011)
Sibley, C.G., Monroe Jr., B.L.: Distribution and taxonomy of the birds of the world. Yale University Press (1990)
Somervuo, P., Harma, A.: Bird song recognition based on syllable pair histograms. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5, pp. 825–828 (2004)
Trifa, V., Kirschel, A., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. Journal of the Acoustical Society of America 123(4), 2424–2431 (2008)
Vlasenko, B., Schuller, B., Wendemuth, A., Rigoll, G.: Frame vs. turn-level: Emotion recognition from speech considering static and dynamic processing. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 139–147. Springer, Heidelberg (2007)
Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM Trans. Intell. Syst. Technol. 2(1), 6:1–6:23 (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Villareal Olvera, T.E., Rascón, C., Meza Ruiz, I.V. (2013). Emotion Based Features of Bird Singing for Turdus migratorius Identification. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Soft Computing and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45111-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-45111-9_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45110-2
Online ISBN: 978-3-642-45111-9
eBook Packages: Computer ScienceComputer Science (R0)