Skip to main content

Emotion Based Features of Bird Singing for Turdus migratorius Identification

  • Conference paper
Advances in Soft Computing and Its Applications (MICAI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8266))

Included in the following conference series:

  • 2416 Accesses

Abstract

A possible solution for the current rate of animal extinction in the world is the use of new technologies in their monitoring in order to tackle problems in the reduction of their populations in a timely manner. In this work we present a system for the identification of the Turdus migratorius bird species based on their singing. The core of the system is based on turn-level features extracted from the audio signal of the bird songs. These features were adapted from the recognition of human emotion in speech, which are based on Support Vector Machines. The resulting system is a prototype module of acoustic identification of birds which goal is to monitor birds in their environment, and, in the future, estimate their populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bogert, B., Healy, M., Tukey, J.: The quefrency alanysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe-cracking. In: Rosenblatt, E.M. (ed.) Symposium on Time Series Analysis, ch. 15, pp. 209–243 (1963)

    Google Scholar 

  2. Briggs, F., Raich, R., Fern, X.Z.: Audio classification of bird species: A statistical manifold approach. In: Ninth IEEE International Conference on Data Mining, ICDM 2009, pp. 51–60 (2009)

    Google Scholar 

  3. Perrins, C.: The new encyclopedia of birds (2011)

    Google Scholar 

  4. Burnie, D.: Animal (2003)

    Google Scholar 

  5. Semarnat. Secretaría de Medio Ambiente y Recursos Naturales. Norma oficial mexicana nom-059-semarnat-2010 (2010)

    Google Scholar 

  6. Mayr, E.: The number of species of birds, vol. 63 (1946)

    Google Scholar 

  7. González, G.F., Gómez de Silva, H.: Especies endmicas: riqueza, patrones de distribucin y retos para su conservacin, p. 150 (2003)

    Google Scholar 

  8. Fagerlund, S.: Bird species recognition using support vector machines. EURASIP J. Appl. Signal Process. (1), 64 (2007)

    Google Scholar 

  9. Glotin, H., Clark, C., Lecun, Y., Dugan, P., Halkais, X., Seuer, J. (eds.): The1st Ingternational Workshop on Machine Learning for Bioacoustics (2013)

    Google Scholar 

  10. Sosa-López, J.R., Gordillo-Martínez, A.: Digitalización de la biblioteca de sonidos naturales del museo de zoología, facultad de ciencias. Universidad nacional autnoma de México (2010)

    Google Scholar 

  11. Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A.: Bird species recognition combining acoustic and sequence modeling. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 341–344 (2011)

    Google Scholar 

  12. Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A., Ferrer, L.: Acoustic front-end optimization for bird species recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, pp. 293–296 (2010)

    Google Scholar 

  13. Harma, A.: Automatic identification of bird species based on sinusoidal modeling of syllables. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 5, pp. 545–548 (2003)

    Google Scholar 

  14. Lee, C.H., Lee, Y.K., Huang, R.Z.: Automatic recognition of bird songs using cepstral coefficients. Journal of Information Technology and Applications (1), 17–23 (2006)

    Google Scholar 

  15. BirdLife International. Threantened birds of the world. Lynx Editions y Birdlife International (2000)

    Google Scholar 

  16. Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., DeSante, D.F., Milan, B.: Manual de métodos para el monitoreo de aves terrestres, vol. (45). Pacific Aouthwest Research Stattion, Forest Service, U.S. Departament of Agriculture (1996)

    Google Scholar 

  17. Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., Ho, K.C.: Bird classification algorithms: theory and experimental results. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2004, pp. 289–292 (2004)

    Google Scholar 

  18. McIlraith, A.L., Card, H.C.: Birdsong recognition using backpropagation and multivariate statistics. IEEE Transactions on Signal Processing 45(11), 2740–2748 (1997)

    Article  Google Scholar 

  19. Milanovic, S., Lukac, Z., Domazetovic, A.: One solution of speech activity detection. In: Conference on Telecommunications ETRAN (1999)

    Google Scholar 

  20. Navarro-Singüenza, Sánchez-González, L.: La diversidad de Aves, vol. (24-56). CIPAMEX/CONABIO/NFWF (2003)

    Google Scholar 

  21. Pikrakis, A., Giannakopoulos, T., Theodoridis, S.: An overview of speech/music discrimination techniques in the context of audio recordings. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments. SCI, vol. 120, pp. 81–102. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Schuller, B.: Voice and speech analysis in search of states and traits. In: Gevers, T., Salah, A.A. (eds.) Computer Analysis of Human Behavior, pp. 227–253 (2011)

    Google Scholar 

  23. Sibley, C.G., Monroe Jr., B.L.: Distribution and taxonomy of the birds of the world. Yale University Press (1990)

    Google Scholar 

  24. Somervuo, P., Harma, A.: Bird song recognition based on syllable pair histograms. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5, pp. 825–828 (2004)

    Google Scholar 

  25. Trifa, V., Kirschel, A., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. Journal of the Acoustical Society of America 123(4), 2424–2431 (2008)

    Article  Google Scholar 

  26. Vlasenko, B., Schuller, B., Wendemuth, A., Rigoll, G.: Frame vs. turn-level: Emotion recognition from speech considering static and dynamic processing. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 139–147. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM Trans. Intell. Syst. Technol. 2(1), 6:1–6:23 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villareal Olvera, T.E., Rascón, C., Meza Ruiz, I.V. (2013). Emotion Based Features of Bird Singing for Turdus migratorius Identification. In: Castro, F., Gelbukh, A., González, M. (eds) Advances in Soft Computing and Its Applications. MICAI 2013. Lecture Notes in Computer Science(), vol 8266. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45111-9_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45111-9_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45110-2

  • Online ISBN: 978-3-642-45111-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics