Emotion Based Features of Bird Singing for Turdus migratorius Identification

  • Toaki Esaú Villareal Olvera
  • Caleb Rascón
  • Ivan Vladimir Meza Ruiz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8266)


A possible solution for the current rate of animal extinction in the world is the use of new technologies in their monitoring in order to tackle problems in the reduction of their populations in a timely manner. In this work we present a system for the identification of the Turdus migratorius bird species based on their singing. The core of the system is based on turn-level features extracted from the audio signal of the bird songs. These features were adapted from the recognition of human emotion in speech, which are based on Support Vector Machines. The resulting system is a prototype module of acoustic identification of birds which goal is to monitor birds in their environment, and, in the future, estimate their populations.


Support Vector Machine Hide Markov Model Bird Species Gaussian Mixture Model Audio Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogert, B., Healy, M., Tukey, J.: The quefrency alanysis of time series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe-cracking. In: Rosenblatt, E.M. (ed.) Symposium on Time Series Analysis, ch. 15, pp. 209–243 (1963)Google Scholar
  2. 2.
    Briggs, F., Raich, R., Fern, X.Z.: Audio classification of bird species: A statistical manifold approach. In: Ninth IEEE International Conference on Data Mining, ICDM 2009, pp. 51–60 (2009)Google Scholar
  3. 3.
    Perrins, C.: The new encyclopedia of birds (2011)Google Scholar
  4. 4.
    Burnie, D.: Animal (2003)Google Scholar
  5. 5.
    Semarnat. Secretaría de Medio Ambiente y Recursos Naturales. Norma oficial mexicana nom-059-semarnat-2010 (2010)Google Scholar
  6. 6.
    Mayr, E.: The number of species of birds, vol. 63 (1946)Google Scholar
  7. 7.
    González, G.F., Gómez de Silva, H.: Especies endmicas: riqueza, patrones de distribucin y retos para su conservacin, p. 150 (2003)Google Scholar
  8. 8.
    Fagerlund, S.: Bird species recognition using support vector machines. EURASIP J. Appl. Signal Process. (1), 64 (2007)Google Scholar
  9. 9.
    Glotin, H., Clark, C., Lecun, Y., Dugan, P., Halkais, X., Seuer, J. (eds.): The1st Ingternational Workshop on Machine Learning for Bioacoustics (2013)Google Scholar
  10. 10.
    Sosa-López, J.R., Gordillo-Martínez, A.: Digitalización de la biblioteca de sonidos naturales del museo de zoología, facultad de ciencias. Universidad nacional autnoma de México (2010)Google Scholar
  11. 11.
    Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A.: Bird species recognition combining acoustic and sequence modeling. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 341–344 (2011)Google Scholar
  12. 12.
    Graciarena, M., Delplanche, M., Shriberg, E., Stolcke, A., Ferrer, L.: Acoustic front-end optimization for bird species recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, pp. 293–296 (2010)Google Scholar
  13. 13.
    Harma, A.: Automatic identification of bird species based on sinusoidal modeling of syllables. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2003), vol. 5, pp. 545–548 (2003)Google Scholar
  14. 14.
    Lee, C.H., Lee, Y.K., Huang, R.Z.: Automatic recognition of bird songs using cepstral coefficients. Journal of Information Technology and Applications (1), 17–23 (2006)Google Scholar
  15. 15.
    BirdLife International. Threantened birds of the world. Lynx Editions y Birdlife International (2000)Google Scholar
  16. 16.
    Ralph, C.J., Geupel, G.R., Pyle, P., Martin, T.E., DeSante, D.F., Milan, B.: Manual de métodos para el monitoreo de aves terrestres, vol. (45). Pacific Aouthwest Research Stattion, Forest Service, U.S. Departament of Agriculture (1996)Google Scholar
  17. 17.
    Kwan, C., Mei, G., Zhao, X., Ren, Z., Xu, R., Stanford, V., Rochet, C., Aube, J., Ho, K.C.: Bird classification algorithms: theory and experimental results. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2004, pp. 289–292 (2004)Google Scholar
  18. 18.
    McIlraith, A.L., Card, H.C.: Birdsong recognition using backpropagation and multivariate statistics. IEEE Transactions on Signal Processing 45(11), 2740–2748 (1997)CrossRefGoogle Scholar
  19. 19.
    Milanovic, S., Lukac, Z., Domazetovic, A.: One solution of speech activity detection. In: Conference on Telecommunications ETRAN (1999)Google Scholar
  20. 20.
    Navarro-Singüenza, Sánchez-González, L.: La diversidad de Aves, vol. (24-56). CIPAMEX/CONABIO/NFWF (2003)Google Scholar
  21. 21.
    Pikrakis, A., Giannakopoulos, T., Theodoridis, S.: An overview of speech/music discrimination techniques in the context of audio recordings. In: Tsihrintzis, G.A., Jain, L.C. (eds.) Multimedia Services in Intelligent Environments. SCI, vol. 120, pp. 81–102. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Schuller, B.: Voice and speech analysis in search of states and traits. In: Gevers, T., Salah, A.A. (eds.) Computer Analysis of Human Behavior, pp. 227–253 (2011)Google Scholar
  23. 23.
    Sibley, C.G., Monroe Jr., B.L.: Distribution and taxonomy of the birds of the world. Yale University Press (1990)Google Scholar
  24. 24.
    Somervuo, P., Harma, A.: Bird song recognition based on syllable pair histograms. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5, pp. 825–828 (2004)Google Scholar
  25. 25.
    Trifa, V., Kirschel, A., Taylor, C.E., Vallejo, E.E.: Automated species recognition of antbirds in a mexican rainforest using hidden markov models. Journal of the Acoustical Society of America 123(4), 2424–2431 (2008)CrossRefGoogle Scholar
  26. 26.
    Vlasenko, B., Schuller, B., Wendemuth, A., Rigoll, G.: Frame vs. turn-level: Emotion recognition from speech considering static and dynamic processing. In: Paiva, A.C.R., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 139–147. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Ward, J.A., Lukowicz, P., Gellersen, H.W.: Performance metrics for activity recognition. ACM Trans. Intell. Syst. Technol. 2(1), 6:1–6:23 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Toaki Esaú Villareal Olvera
    • 1
  • Caleb Rascón
    • 2
  • Ivan Vladimir Meza Ruiz
    • 2
  1. 1.Facultad de Estudios Superiores Zaragoza (FES Zaragoza)Universidad Nacional Autnoma de Mexico (UNAM)Mexico City, DFMexico
  2. 2.Instituto de Investigaciones en Matemticas Aplicadas y en Sistemas (IIMAS)Universidad Nacional Autnoma de Mexico (UNAM)Mexico City, DFMexico

Personalised recommendations