An Introduction to Concept-Level Sentiment Analysis

  • Erik Cambria
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8266)


The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis, and other online collaborative media. The distillation of knowledge from the huge amount of unstructured information on the Web can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product or brand. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. To this end, concept-level sentiment analysis aims to go beyond a mere word-level analysis of text and provide novel approaches to opinion mining and sentiment analysis that enable a more efficient passage from (unstructured) textual information to (structured) machine-processable data, in potentially any domain.


AI NLP concept-level sentiment analysis big social data analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cambria, E., Song, Y., Wang, H., Howard, N.: Semantic multi-dimensional scaling for open-domain sentiment analysis. IEEE Intelligent Systems (2013), doi:10.1109/MIS.2012.118Google Scholar
  2. 2.
    Cambria, E., Schuller, B., Xia, Y., Havasi, C.: New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems 28(2), 15–21 (2013)CrossRefGoogle Scholar
  3. 3.
    Bradley, M., Lang, P.: Affective norms for english words (ANEW): Stimuli, instruction manual and affective ratings. Technical report, The Center for Research in Psychophysiology, University of Florida (1999)Google Scholar
  4. 4.
    Strapparava, C., Valitutti, A.: WordNet-Affect: An affective extension of WordNet. In: LREC, Lisbon, pp. 1083–1086 (2004)Google Scholar
  5. 5.
    Bazzanella, C.: Emotions, language and context. In: Weigand, E. (ed.) Emotion in Dialogic Interaction. Advances in the complex, pp. 59–76, Benjamins, Amsterdam (2004)Google Scholar
  6. 6.
    Esuli, A., Sebastiani, F.: SentiWordNet: A publicly available lexical resource for opinion mining. In: LREC (2006)Google Scholar
  7. 7.
    Cambria, E., Havasi, C., Hussain, A.: SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis. In: FLAIRS, Marco Island, pp. 202–207 (2012)Google Scholar
  8. 8.
    Tsai, A., Tsai, R., Hsu, J.: Building a concept-level sentiment dictionary based on commonsense knowledge. IEEE Intelligent Systems 28(2), 22–30 (2013)CrossRefGoogle Scholar
  9. 9.
    Poria, S., Gelbukh, A., Hussain, A., Das, D., Bandyopadhyay, S.: Enhanced SenticNet with affective labels for concept-based opinion mining. IEEE Intelligent Systems 28(2), 31–30 (2013)Google Scholar
  10. 10.
    Hung, C., Lin, H.K.: Using objective words in SentiWordNet to improve sentiment classification for word of mouth. IEEE Intelligent Systems 28(2), 47–54 (2013)CrossRefGoogle Scholar
  11. 11.
    Bosco, C., Patti, V., Bolioli, A.: Developing corpora for sentiment analysis and opinion mining: A survey and the Senti-TUT case study. IEEE Intelligent Systems 28(2), 55–63 (2013)CrossRefGoogle Scholar
  12. 12.
    Weichselbraun, A., Gindl, S., Scharl, A.: Extracting and grounding context-aware sentiment lexicons. IEEE Intelligent Systems 28(2), 39–46 (2013)CrossRefGoogle Scholar
  13. 13.
    García-Moya, L., Anaya-Sanchez, H., Berlanga-Llavori, R.: A language model approach for retrieving product features and opinions from customer reviews. IEEE Intelligent Systems 28(3), 19–27 (2013)CrossRefGoogle Scholar
  14. 14.
    Xia, R., Zong, C., Hu, X., Cambria, E.: Feature ensemble plus sample selection: A comprehensive approach to domain adaptation for sentiment classification. IEEE Intelligent Systems 28(3), 10–18 (2013)CrossRefGoogle Scholar
  15. 15.
    Di Fabbrizio, G., Aker, A., Gaizauskas, R.: Summarizing on-line product and service reviews using aspect rating distributions and language modeling. IEEE Intelligent Systems 28(3), 28–37 (2013)CrossRefGoogle Scholar
  16. 16.
    Perez-Rosas, V., Mihalcea, R., Morency, L.P.: Multimodal sentiment analysis of Spanish online videos. IEEE Intelligent Systems 28(3), 38–45 (2013)CrossRefGoogle Scholar
  17. 17.
    Wollmer, M., Weninger, F., Knaup, T., Schuller, B., Congkai, S., Sagae, K., Morency, L.P.: YouTube movie reviews: In, cross, and open-domain sentiment analysis in an audiovisual context. IEEE Intelligent Systems 28(3), 46–53 (2013)CrossRefGoogle Scholar
  18. 18.
    Cambria, E., Rajagopal, D., Olsher, D., Das, D.: Big social data analysis. In: Akerkar, R. (ed.) Big Data Computing, pp. 401–414. Chapman and Hall/CRC (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Erik Cambria
    • 1
  1. 1.Temasek LaboratoriesNational University of SingaporeSingapore

Personalised recommendations