Advertisement

Open Relation Mapping Based on Instances and Semantics Expansion

  • Fang Liu
  • Shizhu He
  • Shulin Liu
  • Guangyou Zhou
  • Kang Liu
  • Jun Zhao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8281)

Abstract

Mining the semantics of open relations is an important task in open information extraction (Open IE). For this task, the difficulty is that the expressions of a specific semantic in free texts are always not unique. Therefore, it needs us to deeply capture the semantics behind the various expressions. In this paper, we propose an open relation mapping method combining the instances and semantic expansion, which maps the open relation mentions in free texts to the attribute name in knowledge base to find the real semanics of each open relation mentions. Our method effectively mines semantic expansion beyond the text surface of relation mentions. Experimental results show that our method can achieve 74.4% average accuracy for open relation mapping.

Keywords

open relation mapping semantic mining relation paraphrase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational patterns with semantic types. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1135–1145. Association for Computational Linguistics (2012)Google Scholar
  2. 2.
    Yates, A., Etzioni, O.: Unsupervised resolution of objects and relations on the web. In: Proceedings of NAACL HLT, pp. 121–130 (2007)Google Scholar
  3. 3.
    Min, B., Shi, S., Grishman, R., Lin, C.Y.: Ensemble semantics for large-scale unsupervised relation extraction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1027–1037. Association for Computational Linguistics (2012)Google Scholar
  4. 4.
    Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia and wordnet. Web Semantics: Science, Services and Agents on the World Wide Web 6(3), 203–217 (2008)CrossRefGoogle Scholar
  5. 5.
    Zeng, D., Lai, S., Zhang, Y.: Open entity attribute-value extraction from unstructured text. In: Proceedings of the 2012 China Conference on Information Retrieval. Jiangxi Normal University (2012)Google Scholar
  6. 6.
    Zhao, J., Liu, K., Zhou, G., Cai, L.: Open information extraction. Journal of Chinese Information Processing 25(6), 98–110 (2011)Google Scholar
  7. 7.
    Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., Soderland, S.: Textrunner: open information extraction on the web. In: Proceedings of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations, pp. 25–26. Association for Computational Linguistics (2007)Google Scholar
  8. 8.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1535–1545. Association for Computational Linguistics (2011)Google Scholar
  9. 9.
    Soderland, S., Roof, B., Qin, B., Xu, S., Etzioni, O., et al.: Adapting open information extraction to domain-specific relations. AI Magazine 31(3), 93–102 (2010)Google Scholar
  10. 10.
    Soderland, S., Mandhani, B.: Moving from textual relations to ontologized relations. In: Proc. AAAI Spring Symposium on Machine Reading (2007)Google Scholar
  11. 11.
    Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, vol. 2, pp. 1003–1011. Association for Computational Linguistics (2009)Google Scholar
  12. 12.
    Takamatsu, S., Sato, I., Nakagawa, H.: Reducing wrong labels in distant supervision for relation extraction. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers, vol. 1, pp. 721–729. Association for Computational Linguistics (2012)Google Scholar
  13. 13.
    Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-label learning for relation extraction. In: EMNLP-CoNLL 2012, pp. 455–465 (2012)Google Scholar
  14. 14.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kok, S., Domingos, P.: Extracting semantic networks from text via relational clustering. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 624–639. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Jimenez, S., Becerra, C., Gelbukh, A., Gonzalez, F.: Generalized mongue-elkan method for approximate text string comparison. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 559–570. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10, 707 (1966)MathSciNetGoogle Scholar
  18. 18.
    Fellbaum, C.: Wordnet: an electronic lexical database (1998/2010) WordNet is available from, http://www.cogsci.princeton.edu/wn
  19. 19.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. arXiv preprint cmp-lg/9709008 (1997)Google Scholar
  20. 20.
    Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the 15th International Conference on Machine Learning, San Francisco, vol. 1, pp. 296–304 (1998)Google Scholar
  21. 21.
    Milne, D.N., Witten, I.H.: Learning to link with wikipedia. In: CIKM 2008, pp. 509–518 (2008)Google Scholar
  22. 22.
    Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using wikipedia. In: AAAI 2006, p. 1 (2006)Google Scholar
  23. 23.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence, vol. 6, p. 12 (2007)Google Scholar
  24. 24.
    Porter, M.F.: An algorithm for suffix stripping. Program: electronic library and information systems 14(3), 130–137 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fang Liu
    • 1
  • Shizhu He
    • 1
  • Shulin Liu
    • 1
  • Guangyou Zhou
    • 1
  • Kang Liu
    • 1
  • Jun Zhao
    • 1
  1. 1.Institute of AutomationChinese Academy of SciencesChina

Personalised recommendations