Skip to main content

Certifying 3-Edge-Connectivity

  • Conference paper
Graph-Theoretic Concepts in Computer Science (WG 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8165))

Included in the following conference series:

Abstract

We present a linear-time certifying algorithm that tests graphs for 3-edge-connectivity. If the input graph G is not 3-edge-connected, the algorithm returns a 2-edge-cut. If G is 3-edge-connected, the algorithm returns a construction sequence that constructs G from the graph with two nodes and three parallel edges using only operations that (obviously) preserve 3-edge-connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: Verification of certifying computations. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 67–82. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)

    Google Scholar 

  3. Corcoran, J.N., Schneider, U., Schüttler, H.-B.: Perfect stochastic summation in high order feynman graph expansions. International Journal of Modern Physics C 17(11), 1527–1549 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74(3-4), 107–114 (2000)

    Article  MathSciNet  Google Scholar 

  6. Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. SIGACT News 22(1), 57–61 (1991)

    Article  MathSciNet  Google Scholar 

  7. Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the ACM (JACM) 21(4), 549–568 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Linial, N., Lovász, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8(1), 91–102 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science, FOCS 1985 (1985)

    Google Scholar 

  11. Mader, W.: A reduction method for edge-connectivity in graphs. In: Bollobás, B. (ed.) Advances in Graph Theory. Annals of Discrete Mathematics, vol. 3, pp. 145–164 (1978)

    Google Scholar 

  12. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer Science Review 5(2), 119–161 (2011)

    Article  Google Scholar 

  13. Mehlhorn, K., Näher, S., Uhrig, C.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press (1999)

    Google Scholar 

  14. Mehlhorn, K., Neumann, A., Schmidt, J.M.: Certifying 3-edge-connectivity. CoRR, abs/1211.6553 (2012)

    Google Scholar 

  15. Nagamochi, H., Ibaraki, T.: A linear time algorithm for computing 3-edge-connected components in a multigraph. Japan Journal of Industrial and Applied Mathematics 9, 163–180 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neumann, A.: Implementation of Schmidt’s algorithm for certifying triconnectivity testing. Master’s thesis, Universität des Saarlandes and Graduate School of CS, Germany (2011)

    Google Scholar 

  17. Olariu, S., Zomaya, A.Y.: A time- and cost-optimal algorithm for interlocking sets – With applications. IEEE Trans. Parallel Distrib. Syst. 7(10), 1009–1025 (1996)

    Article  Google Scholar 

  18. Ramachandran, V.: Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In: Synthesis of Parallel Algorithms, pp. 275–340 (1993)

    Google Scholar 

  19. Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. Tech. Report B 10-04, Freie Universität Berlin, Germany (May 2010)

    Google Scholar 

  20. Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. SIAM Journal on Computing 42(2), 494–535 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Information Processing Letters 113(7), 241–244 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taoka, S., Watanabe, T., Onaga, K.: A linear time algorithm for computing all 3-edge-connected components of a multigraph. IEICE Trans. Fundamentals E75(3), 410–424 (1992)

    Google Scholar 

  23. Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theor. Comp. Sys. 40(2), 125–142 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsin, Y.H.: Yet another optimal algorithm for 3-edge-connectivity. J. of Discrete Algorithms 7(1), 130–146 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehlhorn, K., Neumann, A., Schmidt, J.M. (2013). Certifying 3-Edge-Connectivity. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45043-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45042-6

  • Online ISBN: 978-3-642-45043-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics