Abstract
We present a linear-time certifying algorithm that tests graphs for 3-edge-connectivity. If the input graph G is not 3-edge-connected, the algorithm returns a 2-edge-cut. If G is 3-edge-connected, the algorithm returns a construction sequence that constructs G from the graph with two nodes and three parallel edges using only operations that (obviously) preserve 3-edge-connectivity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alkassar, E., Böhme, S., Mehlhorn, K., Rizkallah, C.: Verification of certifying computations. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 67–82. Springer, Heidelberg (2011)
Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer (2008)
Corcoran, J.N., Schneider, U., Schüttler, H.-B.: Perfect stochastic summation in high order feynman graph expansions. International Journal of Modern Physics C 17(11), 1527–1549 (2006)
Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)
Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf. Process. Lett. 74(3-4), 107–114 (2000)
Galil, Z., Italiano, G.F.: Reducing edge connectivity to vertex connectivity. SIGACT News 22(1), 57–61 (1991)
Hopcroft, J., Tarjan, R.: Efficient planarity testing. Journal of the ACM (JACM) 21(4), 549–568 (1974)
Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46–76 (2000)
Linial, N., Lovász, L., Wigderson, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8(1), 91–102 (1988)
Lovász, L.: Computing ears and branchings in parallel. In: Proceedings of the 26th Annual Symposium on Foundations of Computer Science, FOCS 1985 (1985)
Mader, W.: A reduction method for edge-connectivity in graphs. In: Bollobás, B. (ed.) Advances in Graph Theory. Annals of Discrete Mathematics, vol. 3, pp. 145–164 (1978)
McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Computer Science Review 5(2), 119–161 (2011)
Mehlhorn, K., Näher, S., Uhrig, C.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press (1999)
Mehlhorn, K., Neumann, A., Schmidt, J.M.: Certifying 3-edge-connectivity. CoRR, abs/1211.6553 (2012)
Nagamochi, H., Ibaraki, T.: A linear time algorithm for computing 3-edge-connected components in a multigraph. Japan Journal of Industrial and Applied Mathematics 9, 163–180 (1992)
Neumann, A.: Implementation of Schmidt’s algorithm for certifying triconnectivity testing. Master’s thesis, Universität des Saarlandes and Graduate School of CS, Germany (2011)
Olariu, S., Zomaya, A.Y.: A time- and cost-optimal algorithm for interlocking sets – With applications. IEEE Trans. Parallel Distrib. Syst. 7(10), 1009–1025 (1996)
Ramachandran, V.: Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity. In: Synthesis of Parallel Algorithms, pp. 275–340 (1993)
Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. Tech. Report B 10-04, Freie Universität Berlin, Germany (May 2010)
Schmidt, J.M.: Contractions, removals and certifying 3-connectivity in linear time. SIAM Journal on Computing 42(2), 494–535 (2013)
Schmidt, J.M.: A simple test on 2-vertex- and 2-edge-connectivity. Information Processing Letters 113(7), 241–244 (2013)
Taoka, S., Watanabe, T., Onaga, K.: A linear time algorithm for computing all 3-edge-connected components of a multigraph. IEICE Trans. Fundamentals E75(3), 410–424 (1992)
Tsin, Y.H.: A simple 3-edge-connected component algorithm. Theor. Comp. Sys. 40(2), 125–142 (2007)
Tsin, Y.H.: Yet another optimal algorithm for 3-edge-connectivity. J. of Discrete Algorithms 7(1), 130–146 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mehlhorn, K., Neumann, A., Schmidt, J.M. (2013). Certifying 3-Edge-Connectivity. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds) Graph-Theoretic Concepts in Computer Science. WG 2013. Lecture Notes in Computer Science, vol 8165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45043-3_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-45043-3_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-45042-6
Online ISBN: 978-3-642-45043-3
eBook Packages: Computer ScienceComputer Science (R0)