QoS-Aware Service VM Provisioning in Clouds: Experiences, Models, and Cost Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Recent studies show that service systems hosted in clouds can elastically scale the provisioning of pre-configured virtual machines (VMs) with workload demands, but suffer from performance variability, particularly from varying response times. Service management in clouds is further complicated especially when aiming at striking an optimal trade-off between cost (i.e., proportional to the number and types of VM instances) and the fulfillment of quality-of-service (QoS) properties (e.g., a system should serve at least 30 requests per second for more than 90% of the time). In this paper, we develop a QoS-aware VM provisioning policy for service systems in clouds with high capacity variability, using experimental as well as modeling approaches. Using a wiki service hosted in a private cloud, we empirically quantify the QoS variability of a single VM with different configurations in terms of capacity. We develop a Markovian framework which explicitly models the capacity variability of a service cluster and derives a probability distribution of QoS fulfillment. To achieve the guaranteed QoS at minimal cost, we construct theoretical and numerical cost analyses, which facilitate the search for an optimal size of a given VM configuration, and additionally support the comparison between VM configurations.


QoS cloud services VM provisioning Markovian models 


  1. 1.
  2. 2.
  3. 3.
    Björkqvist, M., Chen, L.Y., Binder, W.: Cost-driven Service Provisioning in Hybrid Clouds. In: Proceedings of IEEE Service-Oriented Computing and Applications (SOCA), pp. 1–8 (2012)Google Scholar
  4. 4.
    Björkqvist, M., Chen, L.Y., Binder, W.: Dynamic Replication in Service-Oriented Systems. In: Proceedings of IEEE/ACM CCGrid, pp. 531–538 (2012)Google Scholar
  5. 5.
    Björkqvist, M., Chen, L.Y., Binder, W.: Opportunistic Service Provisioning in the Cloud. In: Proceedings of IEEE CLOUD, pp. 237–244 (2012)Google Scholar
  6. 6.
    Casale, G., Tribastone, M.: Modelling Exogenous Variability in Cloud Deployments. SIGMETRICS Performance Evaluation Review 40(4), 73–82 (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Ansaloni, D., Smirni, E., Yokokawa, A., Binder, W.: Achieving Application-centric Performance Targets via Consolidation on Multicores: Myth or Reality? In: Proceedings of HPDC, pp. 37–48 (2012)Google Scholar
  8. 8.
    Dean, J., Barroso, L.: The Tail at Scale. Commun. ACM 56(2), 74–80 (2013)CrossRefGoogle Scholar
  9. 9.
    Farley, B., Juels, A., Varadarajan, V., Ristenpart, T., Bowers, K.D., Swift, M.M.: More for your Money: Exploiting Performance Heterogeneity in Public Clouds. In: SoCC, pp. 20:1–20:14 (2012)Google Scholar
  10. 10.
    Jackson, K.R., Ramakrishnan, L., Runge, K.J., Thomas, R.C.: Seeking Supernovae in the Clouds: A Performance Study. In: Proceedings of HPDC, pp. 421–429 (2010)Google Scholar
  11. 11.
    Kossmann, D., Kraska, T., Loesing, S.: An Evaluation of Alternative Architectures for Transaction Processing in the Cloud. In: SIGMOD Conference, pp. 579–590 (2010)Google Scholar
  12. 12.
    Mao, M., Humphrey, M.: A Performance Study on the VM Startup Time in the Cloud. In: IEEE CLOUD, pp. 423–430 (2012)Google Scholar
  13. 13.
    Nelson, R.: Probability, Stochastic Processes, and Queueing Theory: The Mathematics of Computer Performance Modeling. Springer (2000)Google Scholar
  14. 14.
    Ramacher, R., Mönch, L.: Dynamic Service Selection with End-to-End Constrained Uncertain QoS Attributes. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 237–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute Clouds. In: Proceedings of ACM CCS, pp. 199–212 (2009)Google Scholar
  16. 16.
    Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance. PVLDB 3(1), 460–471 (2010)Google Scholar
  17. 17.
    Spicuglia, S., Chen, L.Y., Binder, W.: Join the Best Queue: Reducing Performance Variability in Heterogeneous Systems. In: Proceedings of IEEE CLOUD (2013)Google Scholar
  18. 18.
    Tsakalozos, K., Roussopoulos, M., Delis, A.: VM Placement in non-Homogeneous IaaS-Clouds. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 172–187. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Xu, Y., Musgrave, Z., Noble, B., Bailey, M.: Bobtail: Avoiding Long Tails in the Cloud. In: Proceedings of NSDI (April 2013)Google Scholar
  21. 21.
    Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic qoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Zürich LaboratoryIBM ResearchRüschlikonSwitzerland
  2. 2.University of LuganoLuganoSwitzerland

Personalised recommendations