Skip to main content

Infizierte Pseudarthrose

  • 2247 Accesses

Zusammenfassung

Die Infektpseudarthrose ist eine mögliche Ursache für das Ausbleiben der knöchernen Konsolidierung nach Frakturbehandlung oder chirurgischen Knocheneingriffen. Sie ist eine schwerwiegende Komplikation und erfordert eine zielgerichtete Diagnostik: Klinik, radiologisches Bild in Kombination mit dem mikrobiologischen Keimnachweis und das histologische Bild eines Infektes. Risikofaktoren und Eintrittspforten für Keime sollten minimiert werden. Die Infektsanierung besteht zunächst aus Entfernung aller Fremdmaterialen, radikalem chirurgischmn Debridement von avitalen Knochen- und Weichteilen in Kombination mit systemischer und ggf. lokaler Antibiotikagabe. Im 2. Schritt folgt die Rekonstruktion mit osteosynthetischer Stabilisierung, Kochen- und Weichteilrekonstruktion. Die Therapie wird an den Patienten individuell angepasst und kann stark variieren je nach Lokalisation, Keimen, Risikofaktoren, Alter, Kooperationsfähigkeit etc. und erfordert daher ein interdisziplinäres Team.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-44991-8_8
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-44991-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   129.99
Price excludes VAT (USA)
Abb. 8.1
Abb. 8.2
Abb. 8.3
Abb. 8.4
Abb. 8.5
Abb. 8.6

Literatur

  1. Babiak I (2014) Open tibial fractures grade IIIC treated successfully with external fixation, negative-pressure wound therapy and recombinant human bone morphogenetic protein 7. Int Wound J 11:476–482

    CrossRef  PubMed  Google Scholar 

  2. Berbari E, Mabry T, Tsaras G et al. (2010) Inflammatory blood laboratory levels as markers of prosthetic joint infection: a systematic review and meta-analysis. J Bone Joint Surg Am 92:2102–2109

    CrossRef  PubMed  Google Scholar 

  3. Bhandari M, Schemitsch EH, Adili A et al. (1999) High and low pressure pulsatile lavage of contaminated tibial fractures: an in vitro study of bacterial adherence and bone damage. J Orthop Trauma 13:526–533

    CrossRef  CAS  PubMed  Google Scholar 

  4. Boyd JI3rd, Wongworawat MD (2004) High-pressure pulsatile lavage causes soft tissue damage. Clin Orthop Relat Res :13–17

    Google Scholar 

  5. Calori GM, Phillips M, Jeetle S et al. (2008) Classification of non-union: need for a new scoring system? Injury 39(Suppl 2):S59–S63

    CrossRef  PubMed  Google Scholar 

  6. Celsus AC (1935) De Medicina. Loeb Classical Library 1935

    Google Scholar 

  7. Chen CE, Ko JY, Pan CC (2005) Results of vancomycin-impregnated cancellous bone grafting for infected tibial nonunion. Arch Orthop Trauma Surg 125:369–375

    CrossRef  PubMed  Google Scholar 

  8. Cierny G 3rd, Mader JT, Pennick JJ (1985) A clinical staging system of adult osteomyelitis. Contemp Orthop 10:17–37

    Google Scholar 

  9. Deng Z, Cai L, Jin W, Ping A, Wei R (2014) One-stage reconstruction with open bone grafting and vacuum-assisted closure for infected tibial non-union. Arch Med Sci 10:764–772

    CrossRef  PubMed  Google Scholar 

  10. Investigators FLOW, Bhandari M, Jeray KJ, Petrisor BA, Devereaux PJ, Heels-Ansdell D, Schemitsch EH, Anglen J, Della Rocca GJ, Jones C, Kreder H, Liew S, McKay P, Papp S, Sancheti P, Sprague S, Stone TB, Sun X, Tanner SL, Tornetta P 3rd, Tufescu T, Walter S, Guyatt GH et al. (2015) A trial of wound irrigation in the initial management of open fracture wounds. N Engl J Med 373(27):2629–2641. doi:10.1056/NEJMoa1508502.

    CrossRef  Google Scholar 

  11. Frommelt L (2006) Principles of systemic antimicrobial therapy in foreign material associated infection in bone tissue, with special focus on periprosthetic infection. Injury 37(Suppl 2):S87–S94

    CrossRef  PubMed  Google Scholar 

  12. Gallo J, Kolar M, Dendis M et al. (2008) Culture and PCR analysis of joint fluid in the diagnosis of prosthetic joint infection. New Microbiol 31:97–104

    PubMed  Google Scholar 

  13. Gerlach UJ, Schmidt H, Fuchs S et al. (2012) Pseudarthrosen und Infektionen proximaler Oberschenkel. Trauma Berufskrankh 4:482–486

    CrossRef  Google Scholar 

  14. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38(Suppl 4):S3–S6

    CrossRef  Google Scholar 

  15. Gille J, Wallstabe S, Schulz AP et al. (2012) Is non-union of tibial shaft fractures due to nonculturable bacterial pathogens? A clinical investigation using PCR and culture techniques. J Orthop Surg Res 7:20

    CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Hackl S, Glowalla C, Woltmann A et al. (2014) Low-grade infection in the pathogenesis of tibia-shaft nonunion. 7. Kongress für Orthopädie und Unfallchirurgie (DKOU 2014) [http://www.egms.de/static/en/meetings/dkou2014/14dkou167. shtml :

    Google Scholar 

  17. Heppert V, Wagner C, Scherf K, Wentzensen A (2005) Infekt-/Defektpseudarthrose, 7. Aufl. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Hou Z, Irgit K, Strohecker KA, Matzko ME, Wingert NC, DeSantis JG, Smith WR (2011) Delayed flap reconstruction with vacuum-assisted closure management of the open IIIB tibial fracture. J Trauma 71:1705–1708

    PubMed  Google Scholar 

  19. Jain AK, Sinha S (2005) Infected nonunion of the long bones. Clin Orthop Relat Res :57–65

    Google Scholar 

  20. Johnson KD (1987) Management of malunion and nonunion of the tibia. Orthop Clin North Am 18:157–171

    CAS  PubMed  Google Scholar 

  21. Josten C, Marquass B, Schwarz C, Verheyden A (2010) Intramedullary nailing of proximal tibial fractures. Complications and risk factors. Unfallchirurg 113:21–28

    CrossRef  CAS  PubMed  Google Scholar 

  22. Karargyris O, Polyzois VD, Karabinas P, Mavrogenis AF, Pneumaticos SG (2014) Papineau debridement, Ilizarov bone transport, and negative-pressure wound closure for septic bone defects of the tibia. Eur J Orthop Surg Traumatol 24:1013–1017

    CrossRef  PubMed  Google Scholar 

  23. Kunze H, Kramer D (1969) Local antibiotic and enzymatic therapy of chronic osteomyelitis. Med Klin 64:1608–1610

    CAS  PubMed  Google Scholar 

  24. Larsen LH, Lange J, Xu Y, Schonheyder HC (2012) Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995. J Med Microbiol 61:309–316

    CrossRef  PubMed  Google Scholar 

  25. Levine BR, Evans BG (2001) Use of blood culture vial specimens in intraoperative detection of infection. Clin Orthop Relat Res :222–231

    Google Scholar 

  26. Lucke M, Wildemann B, Sadoni S et al. (2005) Systemic versus local application of gentamicin in prophylaxis of implant-related osteomyelitis in a rat model. Bone 36:770–778

    CrossRef  CAS  PubMed  Google Scholar 

  27. Macey LR, Kana SM, Jingushi S et al. (1989) Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am 71:722–733

    CrossRef  CAS  PubMed  Google Scholar 

  28. Maharajan K, Patro DK, Menon J et al. (2013) Serum Procalcitonin is a sensitive and specific marker in the diagnosis of septic arthritis and acute osteomyelitis. J Orthop Surg Res 8:19

    CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Masquelet AC, Begue T (2010) The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 41:27–37

    CrossRef  PubMed  Google Scholar 

  30. McKee MD, Li-Bland EA, Wild LM, Schemitsch EH (2010) A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma 24:483–490

    CrossRef  PubMed  Google Scholar 

  31. Megas P, Saridis A, Kouzelis A et al. (2010) The treatment of infected nonunion of the tibia following intramedullary nailing by the Ilizarov method. Injury 41:294–299

    CrossRef  PubMed  Google Scholar 

  32. Metsemakers WJ, Reul M, Nijs S (2015) The use of gentamicin-coated nails in complex open tibia fracture and revision cases: A retrospective analysis of a single centre case series and review of the literature. Injury 46(12):2433–2437. doi:10.1016/j.injury.2015.09.028.

    CrossRef  CAS  PubMed  Google Scholar 

  33. Militz M, Hackl S, Hungerer S et al. (2014) Infektpseudarthrosen – Wann werden wir aktiv? Trauma Berufskrankh 16(Suppl 4):444–451

    CrossRef  Google Scholar 

  34. Militz M, Weidemann H, la Fougère C (2012) Positronenemissionstomographie-Computertomographie (PET-CT) – Indikation bei Osteitis. Trauma Berufskrankh 14:16–20

    CrossRef  Google Scholar 

  35. Moghaddam A, Zimmermann G, Hammer K et al. (2011) Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures. Injury 42:1435–1442

    CrossRef  PubMed  Google Scholar 

  36. Motsitsi NS (2008) Management of infected nonunion of long bones: the last decade (1996–2006). Injury 39:155–160

    CrossRef  CAS  PubMed  Google Scholar 

  37. Pandey R, Berendt AR, Athanasou NA (2000) Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. The OSIRIS Collaborative Study Group. Oxford Skeletal Infection Research and Intervention Service. Arch Orthop Trauma Surg 120:570–574

    CrossRef  CAS  PubMed  Google Scholar 

  38. Panousis K, Grigoris P, Butcher I et al. (2005) Poor predictive value of broad-range PCR for the detection of arthroplasty infection in 92 cases. Acta Orthop 76:341–346

    PubMed  Google Scholar 

  39. Patel RA, Wilson RF, Patel PA, Palmer RM (2013) The effect of smoking on bone healing: A systematic review. Bone Jt Res 2:102–111

    CrossRef  CAS  Google Scholar 

  40. Patzakis MJ, Zalavras CG (2005) Chronic posttraumatic osteomyelitis and infected nonunion of the tibia: current management concepts. J Am Acad Orthop Surg 13:417–427

    CrossRef  PubMed  Google Scholar 

  41. Podleska LE, Lendemans S, Schmid E et al. (2012) Sample taking during orthopedic surgery: sensitivity and specificity using the BACTEC blood culture system. Eur J Clin Microbiol Infect Dis 31:201–206

    CrossRef  CAS  PubMed  Google Scholar 

  42. Pozo JL, Powell B, Andrews BG et al. (1990) The timing of amputation for lower limb trauma. J Bone Joint Surg Br 72:288–292

    CAS  PubMed  Google Scholar 

  43. Rather LJ (1971) Disturbance of function (functio laesa): the legendary fifth cardinal sign of inflammation, added by Galen to the four cardinal signs of Celsus. Bull N Y Acad Med 47:303–322

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Robinson D, On E, Hadas N et al. (1989) Microbiologic flora contaminating open fractures: its significance in the choice of primary antibiotic agents and the likelihood of deep wound infection. J Orthop Trauma 3:283–286

    CrossRef  CAS  PubMed  Google Scholar 

  45. Schmidmaier G, Lucke M, Wildemann B et al. (2006) Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(Suppl 2):S105–S112

    CrossRef  PubMed  Google Scholar 

  46. Schmidt HG, Tiemann AH, Braunschweig R et al. (2011) Definition of the Diagnosis Osteomyelitis-Osteomyelitis Diagnosis Score (ODS). Z Orthop Unfallchir 149:449–460

    CAS  Google Scholar 

  47. Shroeder JE, Mosheiff R, Khoury A et al. (2009) The outcome of closed, intramedullary exchange nailing with reamed insertion in the treatment of femoral shaft nonunions. J Orthop Trauma 23:653–657

    CrossRef  PubMed  Google Scholar 

  48. Simpson AH, Wood MK, Athanasou NA (2002) Histological assessment of the presence or absence of infection in fracture non-union. Injury 33:151–155

    CrossRef  CAS  PubMed  Google Scholar 

  49. Slatis P, Paavolainen P (1985) External fixation of infected non-union of the femur. Injury 16:599–604

    CrossRef  CAS  PubMed  Google Scholar 

  50. Somanchi BV, Khan S (2008) Vacuum-assisted wound closure (VAC) with simultaneous bone transport in the leg: a technical note. Acta Orthop Belg 74:538–541

    PubMed  Google Scholar 

  51. Stannard JP, Volgas DA, Stewart R, McGwin G Jr, Alonso JE (2009) Negative pressure wound therapy after severe open fractures: a prospective randomized study. J Orthop Trauma 23:552–557

    CrossRef  PubMed  Google Scholar 

  52. Steinhausen E, Glombitza M, Bohm HJ et al. (2013) Non-unions. From diagnosis to healing. Unfallchirurg 116:633–647

    CrossRef  CAS  PubMed  Google Scholar 

  53. Stewart S, Barr S, Engiles J et al. (2012) Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study. J Bone Joint Surg Am 94:1406–1415

    CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Struijs PA, Poolman RW, Bhandari M (2007) Infected nonunion of the long bones. J Orthop Trauma 21:507–511

    CrossRef  PubMed  Google Scholar 

  55. Tonnesen PA, Heerfordt J, Pers M (1975) 150 open fractures of the tibial shaft--the relation between necrosis of the skin and delayed union. Acta Orthop Scand 46:823–835

    CrossRef  CAS  PubMed  Google Scholar 

  56. Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19:349–356

    CrossRef  CAS  PubMed  Google Scholar 

  57. Uckay I, Hoffmeyer P, Lew D, Pittet D (2013) Prevention of surgical site infections in orthopaedic surgery and bone trauma: state-of-the-art update. J Hosp Infect 84:5–12

    CrossRef  CAS  PubMed  Google Scholar 

  58. Virolainen P, Lahteenmaki H, Hiltunen A et al. (2002) The reliability of diagnosis of infection during revision arthroplasties. Scand J Surg 91:178–181

    CAS  PubMed  Google Scholar 

  59. Wagner C, Obst U, Hansch GM (2005) Implant-associated posttraumatic osteomyelitis: collateral damage by local host defense? Int J Artif Organs 28:1172–1180

    CAS  PubMed  Google Scholar 

  60. Wagner C, Hansch GM, Wentzensen A, Heppert V (2006) Implant-associated post-traumatic osteomyelitis. Bacterial biofilms and the immune defence as protagonists of the local inflammatory process. Unfallchirurg 109:761–769

    CrossRef  CAS  PubMed  Google Scholar 

  61. Zmistowski B, Della VC, Bauer TW et al. (2014) Diagnosis of periprosthetic joint infection. J Orthop Res 32(Suppl 1):98–107

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Hungerer, S., Morgenstern, M., Militz, M., Bühren, V. (2017). Infizierte Pseudarthrose. In: Biberthaler, P., van Griensven, M. (eds) Knochendefekte und Pseudarthrosen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44991-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44991-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44990-1

  • Online ISBN: 978-3-642-44991-8

  • eBook Packages: Medicine (German Language)