Skip to main content

Valorization of Carbon Dioxide to Organic Products with Organocatalysts

  • Chapter
  • First Online:
Transformation and Utilization of Carbon Dioxide

Abstract

The search for new and alternative carbon feedstock leads to increasing interest in the (catalytic) transformation of ubiquitous C1-carbon sources, e.g., carbon dioxide into value-added products. With respect to avoiding a carbon footprint, the CO2 activation has to be carried out under mild reaction conditions. Therefore, reactions in solution using molecular metal or metal-free catalysts appear to be particularly suitable. This chapter presents the state-of-the-art methods for the “green” conversion of carbon dioxide to value-added chemicals by metal-free organocatalysts in homogeneous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brundtland GH (1987) United Nations report: our common future, Oxford University Press.

    Google Scholar 

  2. BP Statistical Review of World Energy (2012) Statistical review of world energy. BP p. l. c.

    Google Scholar 

  3. Aresta M, Dibenedetto A (2004) The contribution of the utilization option to reducing the CO2 atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO2 use. Catal Today 98(4):455–462, http://dx.doi.org/10.1016/j.cattod.2004.09.001

    CAS  Google Scholar 

  4. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554. doi:10.1039/B922014C

    CAS  Google Scholar 

  5. Marshall A-L, Alaimo PJ (2010) Useful products from complex starting materials: common chemicals from biomass feedstocks. Chem Eur J 16(17):4970–4980. doi:10.1002/chem.200903028

    CAS  Google Scholar 

  6. Ruppert AM, Weinberg K, Palkovits R (2012) Hydrogenolyse goes Bio: Von Kohlenhydraten und Zuckeralkoholen zu Plattformchemikalien. Angew Chem 124(11):2614–2654. doi:10.1002/ange.201105125

    Google Scholar 

  7. Arakawa H, Aresta M, Armor J, Barteau M, Beckman EJ, Bell AT, Bercaw JE, Creutz C, Dinjus E, Dixon DA, Domen K, Dubois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman WD, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer L, Marks TJ, Morokuma K, Nicholas KM, Periana R, Que L, Rostrup-Nielson J, Sachtler WMH, Schmidt LD, Sen A, Somorjai GA, Stair PC, Stults BR, Tumas W (2001) Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chem Rev 101(4):953–996. doi:10.1021/cr000018s

    CAS  Google Scholar 

  8. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115(1–4):33–52, http://dx.doi.org/10.1016/j.cattod.2006.02.024

    CAS  Google Scholar 

  9. Omae I (2012) Recent developments in carbon dioxide utilization for the production of organic chemicals. Coordination Chem Rev 256(13–14):1384–1405, http://dx.doi.org/10.1016/j.ccr.2012.03.017

    CAS  Google Scholar 

  10. Song C (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal Today 115(1–4):2–32, http://dx.doi.org/10.1016/j.cattod.2006.02.029

    CAS  Google Scholar 

  11. Centi G, Iaquaniello G, Perathoner S (2011) Can we afford to waste carbon dioxide? Carbon dioxide as a valuable source of carbon for the production of light olefins. ChemSusChem 4(9):1265–1273. doi:10.1002/cssc.201100313

    CAS  Google Scholar 

  12. Peters M, Köhler B, Kuckshinrichs W, Leitner W, Markewitz P, Müller TE (2011) Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem 4(9):1216–1240. doi:10.1002/cssc.201000447

    CAS  Google Scholar 

  13. Quadrelli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. ChemSusChem 4(9):1194–1215. doi:10.1002/cssc.201100473

    CAS  Google Scholar 

  14. Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41(4):1538–1558. doi:10.1039/C1CS15147A

    CAS  Google Scholar 

  15. Olah GA, Prakash GKS, Goeppert A (2011) Anthropogenic chemical carbon cycle for a sustainable future. J Am Chem Soc 133(33):12881–12898. doi:10.1021/ja202642y

    CAS  Google Scholar 

  16. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans 28:2975–2992. doi:10.1039/B700658F

    Google Scholar 

  17. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE (2011) Transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew Chem Int Ed 50(37):8510–8537. doi:10.1002/anie.201102010

    CAS  Google Scholar 

  18. Drees M, Cokoja M, Kühn FE (2012) Recycling CO2? Computational considerations of the activation of CO2 with homogeneous transition metal catalysts. ChemCatChem 4(11):1703–1712. doi:10.1002/cctc.201200145

    CAS  Google Scholar 

  19. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639. doi:10.1002/anie.200460442

    CAS  Google Scholar 

  20. Sakakura T, Kohno K (2009) The synthesis of organic carbonates from carbon dioxide. Chem Commun 11:1312–1330. doi:10.1039/B819997C

    Google Scholar 

  21. Darensbourg DJ (2010) Chemistry of carbon dioxide relevant to its utilization: a personal perspective. Inorg Chem 49(23):10765–10780. doi:10.1021/ic101800d

    CAS  Google Scholar 

  22. Decortes A, Castilla AM, Kleij AW (2010) Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides. Angew Chem Int Ed 49(51):9822–9837. doi:10.1002/ange.201002087

    CAS  Google Scholar 

  23. Kember MR, Buchard A, Williams CK (2011) Catalysts for CO2/epoxide copolymerisation. Chem Commun 47(1):141–163. doi:10.1039/C0CC02207A

    CAS  Google Scholar 

  24. Klaus S, Lehenmeier MW, Anderson CE, Rieger B (2011) Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coordination Chem Rev 255(13–14):1460–1479, http://dx.doi.org/10.1016/j.ccr.2010.12.002

    CAS  Google Scholar 

  25. Lu X-B, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41(4):1462–1484. doi:10.1039/C1CS15142H

    CAS  Google Scholar 

  26. Shaikh A-AG, Sivaram S (1996) Organic carbonates. Chem Rev 96(3):951–976. doi:10.1021/cr950067i

    CAS  Google Scholar 

  27. Calo V, Nacci A, Monopoli A, Fanizzi A (2002) Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett 4(15):2561–2563. doi:10.1021/ol026189w

    CAS  Google Scholar 

  28. Wang J-Q, Dong K, Cheng W-G, Sun J, Zhang S-J (2012) Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides. Catal Sci Technol 2(7):1480–1484. doi:10.1039/c2cy20103h

    Google Scholar 

  29. Peng J, Deng Y (2001) Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25(4):639–641. doi:10.1039/B008923K

    CAS  Google Scholar 

  30. Dharman MM, Choi H-J, Park S-W, Park D-W (2010) Microwave assisted synthesis of cyclic carbonate using homogeneous and heterogeneous ionic liquid catalysts. Top Catal 53(7–10):462–469. doi:10.1007/s11244-010-9473-0

    Google Scholar 

  31. Kawanami H, Sasaki A, Matsui K, Ikushima Y (2003) A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem Commun 7:896–897. doi:10.1039/B212823C

    Google Scholar 

  32. Sun H, Zhang D (2007) Density functional theory study on the cycloaddition of carbon dioxide with propylene oxide catalyzed by alkylmethylimidazolium chlorine ionic liquids. J Phys Chem A 111(32):8036–8043. doi:10.1021/jp073873p

    CAS  Google Scholar 

  33. Kim HS, Kim JJ, Kim H, Jang HG (2003) Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal 220(1):44–46, http://dx.doi.org/10.1016/S0021-9517(03)00238-0

    CAS  Google Scholar 

  34. Wong W-L, Chan P-H, Zhou Z-Y, Lee K-H, Cheung K-C, Wong K-Y (2008) A robust ionic liquid as reaction medium and efficient organocatalyst for carbon dioxide fixation. ChemSusChem 1(1–2):67–70. doi:10.1002/cssc.200700097

    CAS  Google Scholar 

  35. Sun J, Zhang S, Cheng W, Ren J (2008) Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Lett 49(22):3588–3591. doi:10.1016/j.tetlet.2008.04.022

    CAS  Google Scholar 

  36. Zhou Y, Hu S, Ma X, Liang S, Jiang T, Han B (2008) Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. J Mol Catal A-Chem 284(1–2):52–57. doi:10.1016/j.molcata.2008.01.010

    CAS  Google Scholar 

  37. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T (2010) Bifunctional organocatalyst for activation of carbon dioxide and epoxide to produce cyclic carbonate: betaine as a new catalytic motif. Org Lett 12(24):5728–5731. doi:10.1021/ol102539x

    CAS  Google Scholar 

  38. Qi C, Jiang H (2010) Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. Sci China-Chem 53(7):1566–1570. doi:10.1007/s11426-010-4019-7

    CAS  Google Scholar 

  39. Wu F, Dou X-Y, He L-N, Miao C-X (2010) Natural amino acid-based ionic liquids as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions. Lett Org Chem 7(1):73–78

    CAS  Google Scholar 

  40. Gong Q, Luo H, Cao J, Shang Y, Zhang H, Wang W, Zhou X (2012) Synthesis of cyclic carbonate from carbon dioxide and epoxide using amino acid ionic liquid under 1 atm pressure. Aust J Chem 65(4):381–386. doi:10.1071/ch11462

    CAS  Google Scholar 

  41. Zhou H, Zhang W-Z, Liu C-H, Qu J-P, Lu X-B (2008) CO2 adducts of N-heterocyclic carbenes: thermal stability and catalytic activity toward the coupling of CO2 with epoxides. J Org Chem 73(20):8039–8044. doi:10.1021/jo801457r

    CAS  Google Scholar 

  42. Kayaki Y, Yamamoto M, Ikariya T (2009) N-heterocyclic carbenes as efficient organocatalysts for CO2 fixation reactions. Angew Chem-Int Ed 48(23):4194–4197. doi:10.1002/anie.200901399

    CAS  Google Scholar 

  43. Sun J, Ren J, Zhang S, Cheng W (2009) Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett 50(4):423–426. doi:10.1016/j.tetlet.2008.11.034

    CAS  Google Scholar 

  44. Yang Z-Z, He L-N, Miao C-X, Chanfreau S (2010) Lewis basic ionic liquids-catalyzed conversion of carbon dioxide to cyclic carbonates. Adv Synth Catal 352(13):2233–2240. doi:10.1002/adsc.201000239

    CAS  Google Scholar 

  45. Aoyagi N, Furusho Y, Endo T (2012) Remarkably efficient catalysts of amidine hydroiodides for the synthesis of cyclic carbonates from carbon dioxide and epoxides under mild conditions. Chem Lett 41(3):240–241. doi:10.1246/cl.2012.240

    CAS  Google Scholar 

  46. Aoyagi N, Furusho Y, Endo T (2013) Convenient synthesis of cyclic carbonates from CO2 and epoxides by simple secondary and primary ammonium iodides as metal-free catalysts under mild conditions and its application to synthesis of polymer bearing cyclic carbonate moiety. J Polymer Sci Part A-Polymer Chem 51(5):1230–1242. doi:10.1002/pola.26492

    CAS  Google Scholar 

  47. Sun J, Han L, Cheng W, Wang J, Zhang X, Zhang S (2011) Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions. Chemsuschem 4(4):502–507. doi:10.1002/cssc.201000305

    CAS  Google Scholar 

  48. Han L, Choi S-J, Park M-S, Lee S-M, Kim Y-J, Kim M-I, Liu B, Park D-W (2012) Carboxylic acid functionalized imidazolium-based ionic liquids: efficient catalysts for cycloaddition of CO2 and epoxides. React Kinet Mech Catal 106(1):25–35. doi:10.1007/s11144-011-0399-8

    CAS  Google Scholar 

  49. Foltran S, Alsarraf J, Robert F, Landais Y, Cloutet E, Cramail H, Tassaing T (2013) On the chemical fixation of supercritical carbon dioxide with epoxides catalyzed by ionic salts: an in situ FTIR and Raman study. Catal Sci Technol 3(4):1046–1055. doi:10.1039/c2cy20784b

    CAS  Google Scholar 

  50. Xiao L, Lv D, Wu W (2011) Brønsted acidic ionic liquids mediated metallic salts catalytic system for the chemical fixation of carbon dioxide to form cyclic carbonates. Catal Lett 141(12):1838–1844. doi:10.1007/s10562-011-0682-3

    CAS  Google Scholar 

  51. Whiteoak CJ, Nova A, Maseras F, Kleij AW (2012) Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2 as a feedstock. ChemSusChem 5(10):2032–2038. doi:10.1002/cssc.201200255

    CAS  Google Scholar 

  52. Wu Z, Xie H, Yu X, Liu E (2013) Lignin-based green catalyst for the chemical fixation of carbon dioxide with epoxides to form cyclic carbonates under solvent-free conditions. ChemCatChem. doi:10.1002/cctc.201200894

    Google Scholar 

  53. Zhao Y, Yao C, Chen G, Yuan Q (2013) Highly efficient synthesis of cyclic carbonate with CO2 catalyzed by ionic liquid in a microreactor. Green Chem 15(2):446–452. doi:10.1039/c2gc36612f

    CAS  Google Scholar 

  54. Yu T, Weiss RG (2012) Syntheses of cyclic carbonates with amidinium halide catalysts in reusable, reversible, room-temperature ionic liquids or acetonitrile. Green Chem 14(1):209–216. doi:10.1039/c1gc16027c

    CAS  Google Scholar 

  55. Chatelet B, Joucla L, Dutasta J-P, Martinez A, Szeto KC, Dufaud V (2013) Azaphosphatranes as structurally tunable organocatalysts for carbonate synthesis from CO2 and epoxides. J Am Chem Soc 135(14):5348–5351. doi:10.1021/ja402053d

    CAS  Google Scholar 

  56. Wang J-Q, Kong D-L, Chen J-Y, Cai F, He L-N (2006) Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. J Mol Catal A Chem 249(1–2):143–148, http://dx.doi.org/10.1016/j.molcata.2006.01.008

    CAS  Google Scholar 

  57. Wang J-Q, Yue X-D, Cai F, He L-N (2007) Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silica-supported ionic liquids under supercritical conditions. Catal Commun 8(2):167–172, http://dx.doi.org/10.1016/j.catcom.2006.05.049

    CAS  Google Scholar 

  58. Zhu A, Jiang T, Han B, Zhang J, Xie Y, Ma X (2007) Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chem 9(2):169–172. doi:10.1039/B612164K

    CAS  Google Scholar 

  59. Xie H, Duan H, Li S, Zhang S (2005) The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride. New J Chem 29(9):1199–1203. doi:10.1039/B504822B

    CAS  Google Scholar 

  60. Lai G, Peng J, Li J, Qiu H, Jiang J, Jiang K, Shen Y (2006) Ionic liquid functionalized silica gel: novel catalyst and fixed solvent. Tetrahedron Lett 47(39):6951–6953, http://dx.doi.org/10.1016/j.tetlet.2006.07.122

    CAS  Google Scholar 

  61. Zhang X, Wang D, Zhao N, Al-Arifi ASN, Aouak T, Al-Othman ZA, Wei W, Sun Y (2009) Grafted ionic liquid: catalyst for solventless cycloaddition of carbon dioxide and propylene oxide. Catal Commun 11(1):43–46, http://dx.doi.org/10.1016/j.catcom.2009.08.007

    Google Scholar 

  62. Sakai T, Tsutsumi Y, Ema T (2008) Highly active and robust organic-inorganic hybrid catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. Green Chem 10(3):337–341. doi:10.1039/B718321F

    CAS  Google Scholar 

  63. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T (2006) Synergistic hybrid catalyst for cyclic carbonate synthesis: remarkable acceleration caused by immobilization of homogeneous catalyst on silica. Chem Commun 15:1664–1666. doi:10.1039/B517140G

    Google Scholar 

  64. Udayakumar S, Park S-W, Park D-W, Choi B-S (2008) Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catal Commun 9(7):1563–1570, http://dx.doi.org/10.1016/j.catcom.2008.01.001

    CAS  Google Scholar 

  65. Udayakumar S, Raman V, Shim H-L, Park D-W (2009) Cycloaddition of carbon dioxide for commercially-imperative cyclic carbonates using ionic liquid-functionalized porous amorphous silica. Appl Catal A Gen 368(1–2):97–104, http://dx.doi.org/10.1016/j.apcata.2009.08.015

    CAS  Google Scholar 

  66. Udayakumar S, Lee M-K, Shim H-L, Park S-W, Park D-W (2009) Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate. Catal Commun 10(5):659–664, http://dx.doi.org/10.1016/j.catcom.2008.11.017

    CAS  Google Scholar 

  67. Dharman MM, Choi H-J, Kim D-W, Park D-W (2011) Synthesis of cyclic carbonate through microwave irradiation using silica-supported ionic liquids: effect of variation in the silica support. Catal Today 164(1):544–547, http://dx.doi.org/10.1016/j.cattod.2010.11.009

    CAS  Google Scholar 

  68. Han L, Park S-W, Park D-W (2009) Silica grafted imidazolium-based ionic liquids: efficient heterogeneous catalysts for chemical fixation of CO2 to a cyclic carbonate. Energy Environ Sci 2(12):1286–1292. doi:10.1039/B910763K

    CAS  Google Scholar 

  69. Han L, Choi H-J, Choi S-J, Liu B, Park D-W (2011) Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem 13(4):1023–1028. doi:10.1039/C0GC00612B

    CAS  Google Scholar 

  70. Appaturi JN, Adam F (2013) A facile and efficient synthesis of styrene carbonate via cycloaddition of CO2 to styrene oxide over ordered mesoporous MCM-41-Imi/Br catalyst. Appl Catal B Environ 136–137:150–159, http://dx.doi.org/10.1016/j.apcatb.2013.01.049

    Google Scholar 

  71. Motokura K, Itagaki S, Iwasawa Y, Miyaji A, Baba T (2009) Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide. Green Chem 11(11):1876–1880. doi:10.1039/B916764C

    CAS  Google Scholar 

  72. Udayakumar S, Son Y-S, Lee M-K, Park S-W, Park D-W (2008) The synthesis of chloropropylated MCM-41 through co-condensation technique: the path finding process. Appl Catal A Gen 347(2):192–199, http://dx.doi.org/10.1016/j.apcata.2008.06.009

    CAS  Google Scholar 

  73. Cheng W, Chen X, Sun J, Wang J, Zhang S (2013) SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides. Catal Today 200:117–124, http://dx.doi.org/10.1016/j.cattod.2012.10.001

    CAS  Google Scholar 

  74. Xie Y, Zhang Z, Jiang T, He J, Han B, Wu T, Ding K (2007) CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew Chem Int Ed 46(38):7255–7258. doi:10.1002/anie.200701467

    CAS  Google Scholar 

  75. Shi T-Y, Wang J-Q, Sun J, Wang M-H, Cheng W-G, Zhang S-J (2013) Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids). RSC Adv 3(11):3726–3732. doi:10.1039/C3RA21872D

    CAS  Google Scholar 

  76. Xiong Y, Wang H, Wang R, Yan Y, Zheng B, Wang Y (2010) A facile one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. Chem Commun 46(19):3399–3401. doi:10.1039/B926901K

    CAS  Google Scholar 

  77. Xiong Y, Wang Y, Wang H, Wang R (2011) A facile one-step synthesis to ionic liquid-based cross-linked polymeric nanoparticles and their application for CO2 fixation. Polym Chem 2(10):2306–2315. doi:10.1039/C1PY00201E

    CAS  Google Scholar 

  78. Xiong Y, Wang Y, Wang H, Wang R, Cui Z (2012) Novel one-step synthesis to cross-linked polymeric nanoparticles as highly active and selective catalysts for cycloaddition of CO2 to epoxides. J Appl Polym Sci 123(3):1486–1493. doi:10.1002/app.34622

    CAS  Google Scholar 

  79. Nishikubo T, Kameyama A, Yamashita J, Tomoi M, Fukuda W (1993) Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide. J Polym Sci A Polym Chem 31(4):939–947. doi:10.1002/pola.1993.080310412

    CAS  Google Scholar 

  80. Park D-W, Yu B-S, Jeong E-S, Kim I, Kim M-I, Oh K-J, Park S-W (2004) Comparative studies on the performance of immobilized quaternary ammonium salt catalysts for the addition of carbon dioxide to glycidyl methacrylate. Catal Today 98(4):499–504, http://dx.doi.org/10.1016/j.cattod.2004.09.003

    CAS  Google Scholar 

  81. Du Y, Cai F, Kong D-L, He L-N (2005) Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem 7(7):518–523. doi:10.1039/B500074B

    CAS  Google Scholar 

  82. Ma J, Song J, Liu H, Liu J, Zhang Z, Jiang T, Fan H, Han B (2012) One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chem 14(6):1743–1748. doi:10.1039/C2GC35150A

    CAS  Google Scholar 

  83. Chen X, Sun J, Wang J, Cheng W (2012) Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Lett 53(22):2684–2688, http://dx.doi.org/10.1016/j.tetlet.2012.03.058

    CAS  Google Scholar 

  84. Xiong Y, Bai F, Cui Z, Guo N, Wang R (2013) Cycloaddition reaction of carbon dioxide to epoxides catalyzed by polymer-supported quaternary phosphonium salts. J Chem 2013:9. doi:10.1155/2013/261378

    Google Scholar 

  85. Sun J, Cheng W, Fan W, Wang Y, Meng Z, Zhang S (2009) Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catal Today 148(3–4):361–367, http://dx.doi.org/10.1016/j.cattod.2009.07.070

    CAS  Google Scholar 

  86. Yu J-I, Choi H-J, Selvaraj M, Park D-W (2011) Catalytic performance of polymer-supported ionic liquids in the cycloaddition of carbon dioxide to allyl glycidyl ether. React Kinet Mech Catal 102(2):353–365. doi:10.1007/s11144-010-0280-1

    CAS  Google Scholar 

  87. Watile RA, Deshmukh KM, Dhake KP, Bhanage BM (2012) Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catal Sci Technol 2(5):1051–1055. doi:10.1039/C2CY00458E

    CAS  Google Scholar 

  88. Dai W-L, Chen L, Yin S-F, Li W-H, Zhang Y-Y, Luo S-L, Au C-T (2010) High-efficiency synthesis of cyclic carbonates from epoxides and CO2 over hydroxyl ionic liquid catalyst grafted onto cross-linked polymer. Catal Lett 137(1–2):74–80. doi:10.1007/s10562-010-0346-8

    CAS  Google Scholar 

  89. Zhang Y, Yin S, Luo S, Au CT (2012) Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazolium-based ionic liquid grafted onto cross-linked polymer. Indus Eng Chem Res 51(10):3951–3957. doi:10.1021/ie203001u

    CAS  Google Scholar 

  90. Ochiai B, Endo T (2007) Polymer-supported pyridinium catalysts for synthesis of cyclic carbonate by reaction of carbon dioxide and oxirane. J Polym Sci A Polym Chem 45(23):5673–5678. doi:10.1002/pola.22316

    CAS  Google Scholar 

  91. He J, Wu T, Zhang Z, Ding K, Han B, Xie Y, Jiang T, Liu Z (2007) Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts. Chem Eur J 13(24):6992–6997. doi:10.1002/chem.200700210

    CAS  Google Scholar 

  92. Han L, Choi H-J, Kim D-K, Park S-W, Liu B, Park D-W (2011) Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide. J Mol Catal A Chem 338(1–2):58–64, http://dx.doi.org/10.1016/j.molcata.2011.02.001

    CAS  Google Scholar 

  93. Cho HC, Lee HS, Chun J, Lee SM, Kim HJ, Son SU (2011) Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates. Chem Commun 47(3):917–919. doi:10.1039/C0CC03914D

    CAS  Google Scholar 

  94. Song Q-W, He L-N, Wang J-Q, Yasuda H, Sakakura T (2013) Catalytic fixation of CO2 to cyclic carbonates by phosphonium chlorides immobilized on fluorous polymer. Green Chem 15(1):110–115. doi:10.1039/C2GC36210D

    CAS  Google Scholar 

  95. Aprile C, Giacalone F, Agrigento P, Liotta LF, Martens JA, Pescarmona PP, Gruttadauria M (2011) Multilayered supported ionic liquids as catalysts for chemical fixation of carbon dioxide: a high-throughput study in supercritical conditions. ChemSusChem 4(12):1830–1837. doi:10.1002/cssc.201100446

    CAS  Google Scholar 

  96. Du Y, Wang J-Q, Chen J-Y, Cai F, Tian J-S, Kong D-L, He L-N (2006) A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett 47(8):1271–1275, http://dx.doi.org/10.1016/j.tetlet.2005.12.077

    CAS  Google Scholar 

  97. Dou X-Y, Wang J-Q, Du Y, Wang E, He L-N (2007) Guanidinium salt functionalized PEG: an effective and recyclable homo-geneous catalyst for the synthesis of cyclic carbonates from CO2 and epoxides under solvent-free conditions. Synlett 2007:3058–3062. doi:10.1055/s-2007-992362

    Google Scholar 

  98. Yang Z-Z, Zhao Y-N, He L-N, Gao J, Yin Z-S (2012) Highly efficient conversion of carbon dioxide catalyzed by polyethylene glycol-functionalized basic ionic liquids. Green Chem 14(2):519–527. doi:10.1039/C2GC16039K

    CAS  Google Scholar 

  99. Zhao Y-N, Yang Z-Z, Luo S-H, He L-N (2013) Design of task-specific ionic liquids for catalytic conversion of CO2 with aziridines under mild conditions. Catal Today 200:2–8, http://dx.doi.org/10.1016/j.cattod.2012.04.006

    CAS  Google Scholar 

  100. Patil YP, Tambade PJ, Jagtap SR, Bhanage BM (2008) Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using BrPh3 +P-PEG600-P+Ph3Br as homogenous recyclable catalyst. J Mol Catal A Chem 289(1–2):14–21, http://dx.doi.org/10.1016/j.molcata.2008.03.019

    CAS  Google Scholar 

  101. Choi H-J, Selvaraj M, Park D-W (2013) Catalytic performance of immobilized ionic liquid onto PEG for the cycloaddition of carbon dioxide to allyl glycidyl ether. Chem Eng Sci 100:242–248. doi:http://dx.doi.org/10.1016/j.ces.2012.11.014

  102. Zhao Y, Tian J-S, Qi X-H, Han Z-N, Zhuang Y-Y, He L-N (2007) Quaternary ammonium salt-functionalized chitosan: an easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. J Mol Catal A Chem 271(1–2):284–289, http://dx.doi.org/10.1016/j.molcata.2007.03.047

    CAS  Google Scholar 

  103. Tharun J, Hwang Y, Roshan R, Ahn S, Kathalikkattil AC, Park D-W (2012) A novel approach of utilizing quaternized chitosan as a catalyst for the eco-friendly cycloaddition of epoxides with CO2. Catal Sci Technol 2(8):1674–1680. doi:10.1039/C2CY20137B

    CAS  Google Scholar 

  104. Tharun J, Kim DW, Roshan R, Hwang Y, Park D-W (2013) Microwave assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides. Catal Commun 31:62–65, http://dx.doi.org/10.1016/j.catcom.2012.11.018

    CAS  Google Scholar 

  105. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14(3):654–660. doi:10.1039/C2GC16335G

    CAS  Google Scholar 

  106. Roshan KR, Mathai G, Kim J, Tharun J, Park G-A, Park D-W (2012) A biopolymer mediated efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Green Chem 14(10):2933–2940. doi:10.1039/C2GC35942A

    CAS  Google Scholar 

  107. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartorio R (2003) Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett 44(14):2931–2934, http://dx.doi.org/10.1016/S0040-4039(03)00424-6

    CAS  Google Scholar 

  108. Zhang X, Zhao N, Wei W, Sun Y (2006) Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts. Catal Today 115(1–4):102–106, http://dx.doi.org/10.1016/j.cattod.2006.02.028

    CAS  Google Scholar 

  109. Zhang X, Zhang Y, Yang Y, Wei Q, Zhang X (2008) Chemical fixation of carbon dioxide to propylene carbonate over TBD/SiO2 and DBU/SiO2 catalysts. React Kinet Catal Lett 94(2):385–390. doi:10.1007/s11144-008-5275-9

    CAS  Google Scholar 

  110. Yu KMK, Curcic I, Gabriel J, Morganstewart H, Tsang SC (2009) Catalytic coupling of CO2 with epoxide over supported and unsupported amines. J Phys Chem A 114(11):3863–3872. doi:10.1021/jp906365g

    Google Scholar 

  111. Sankar M, Tarte NH, Manikandan P (2004) Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides. Appl Cataly A Gen 276(1–2):217–222, http://dx.doi.org/10.1016/j.apcata.2004.08.008

    CAS  Google Scholar 

  112. Shiels RA, Jones CW (2007) Homogeneous and heterogeneous 4-(N, N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. J Mol Catal A Chem 261(2):160–166, http://dx.doi.org/10.1016/j.molcata.2006.08.002

    CAS  Google Scholar 

  113. Srivastava R, Srinivas D, Ratnasamy P (2005) CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J Catal 233(1):1–15, http://dx.doi.org/10.1016/j.jcat.2005.03.023

    CAS  Google Scholar 

  114. Srivastava R, Srinivas D, Ratnasamy P (2006) Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Micropor Mesopor Mater 90(1–3):314–326, http://dx.doi.org/10.1016/j.micromeso.2005.10.043

    CAS  Google Scholar 

  115. Jagtap SR, Raje VP, Samant SD, Bhanage BM (2007) Silica supported polyvinyl pyridine as a highly active heterogeneous base catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J Mol Catal A Chem 266(1–2):69–74, http://dx.doi.org/10.1016/j.molcata.2006.10.033

    CAS  Google Scholar 

  116. Adam F, Batagarawa MS (2013) Tetramethylguanidine–silica nanoparticles as an efficient and reusable catalyst for the synthesis of cyclic propylene carbonate from carbon dioxide and propylene oxide. Appl Catal A Gen 454:164–171, http://dx.doi.org/10.1016/j.apcata.2012.12.009

    CAS  Google Scholar 

  117. Prasetyanto EA, Ansari MB, Min B-H, Park S-E (2010) Melamine tri-silsesquioxane bridged periodic mesoporous organosilica as an efficient metal-free catalyst for CO2 activation. Catal Today 158(3–4):252–257, http://dx.doi.org/10.1016/j.cattod.2010.03.081

    CAS  Google Scholar 

  118. Roeser J, Kailasam K, Thomas A (2012) Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides. ChemSusChem 5(9):1793–1799. doi:10.1002/cssc.201200091

    CAS  Google Scholar 

  119. Huang J-W, Shi M (2003) Chemical fixation of carbon dioxide by NaI/PPh3/PhOH. J Org Chem 68(17):6705–6709. doi:10.1021/jo0348221

    CAS  Google Scholar 

  120. Shen Y-M, Duan W-L, Shi M (2003) Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Adv Synth Catal 345(3):337–340. doi:10.1002/adsc.200390035

    CAS  Google Scholar 

  121. Wang J-Q, Sun J, Cheng W-G, Dong K, Zhang X-P, Zhang S-J (2012) Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates. Phys Chem Chem Phys 14(31):11021–11026. doi:10.1039/c2cp41698k

    CAS  Google Scholar 

  122. Liang S, Liu H, Jiang T, Song J, Yang G, Han B (2011) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides over cellulose/KI. Chem Commun 47(7):2131–2133. doi:10.1039/c0cc04829a

    CAS  Google Scholar 

  123. Song J, Zhang Z, Han B, Hu S, Li W, Xie Y (2008) Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of [small beta]-cyclodextrin. Green Chem 10(12):1337–1341. doi:10.1039/B815105A

    CAS  Google Scholar 

  124. Song J, Zhang B, Zhang P, Ma J, Liu J, Fan H, Jiang T, Han B (2012) Highly efficient synthesis of cyclic carbonates from CO2 and epoxides catalyzed by KI/lecithin. Catal Today 183(1):130–135. doi:10.1016/j.cattod.2011.08.042

    CAS  Google Scholar 

  125. Zhou L, Liu Y, He Z, Luo Y, Zhou F, Yu E, Hou Z, Eli W (2013) Pentaerythritol and KI: an efficient catalytic system for the conversion from CO2 and epoxides to cyclic carbonates. J Chem Res 2:102–104. doi:10.3184/174751913x13571500195988

    Google Scholar 

  126. Ma J, Liu J, Zhang Z, Han B (2012) The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide. Green Chem 14(9):2410–2420. doi:10.1039/c2gc35711a

    CAS  Google Scholar 

  127. Sonnati MO, Amigoni S, de Givenchy EPT, Darmanin T, Choulet O, Guittard F (2013) Glycerol carbonate as a versatile building block for tomorrow: synthesis, reactivity, properties and applications. Green Chem 15(2):283–306. doi:10.1039/c2gc36525a

    CAS  Google Scholar 

  128. Cui H, Wang T, Wang F, Gu C, Wang P, Dai Y (2003) One-pot synthesis of dimethyl carbonate using ethylene oxide, methanol, and carbon dioxide under supercritical conditions. Indus Eng Chem Res 42(17):3865–3870. doi:10.1021/ie021014b

    CAS  Google Scholar 

  129. Cui H, Wang T, Wang F, Gu C, Wang P, Dai Y (2004) Kinetic study on the one-pot synthesis of dimethyl carbonate in supercritical CO2 conditions. Indus Eng Chem Res 43(24):7732–7739. doi:10.1021/ie049715r

    CAS  Google Scholar 

  130. Kishimoto Y, Ogawa I (2004) Amine-catalyzed, one-pot coproduction of dialkyl carbonates and 1,2-diols from epoxides, alcohols, and carbon dioxide. Indus Eng Chem Res 43(26):8155–8162. doi:10.1021/ie040006n

    CAS  Google Scholar 

  131. Chen X, Hu C, Su J, Yu T, Gao Z (2006) One-pot synthesis of dimethyl carbonate catalyzed by [bmim]BF4/CH3ONa. Chin J Catal 27(6):485–488, http://dx.doi.org/10.1016/S1872-2067(06)60029-6

    Google Scholar 

  132. Tian J-S, Wang J-Q, Chen J-Y, Fan J-G, Cai F, He L-N (2006) One-pot synthesis of dimethyl carbonate catalyzed by n-Bu4NBr/n-Bu3N from methanol, epoxides, and supercritical CO2. Appl Catal A Gen 301(2):215–221, http://dx.doi.org/10.1016/j.apcata.2005.12.002

    CAS  Google Scholar 

  133. Tian J-S, Miao C-X, Wang J-Q, Cai F, Du Y, Zhao Y, He L-N (2007) Efficient synthesis of dimethyl carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chem 9(6):566–571. doi:10.1039/B614259A

    CAS  Google Scholar 

  134. Li J, Wang L, Shi F, Liu S, He Y, Lu L, Ma X, Deng Y (2011) Quaternary ammonium ionic liquids as bi-functional catalysts for one-step synthesis of dimethyl carbonate from ethylene oxide, carbon dioxide and methanol. Catal Lett 141(2):339–346. doi:10.1007/s10562-010-0498-6

    CAS  Google Scholar 

  135. Wang J-Q, Sun J, Shi C-Y, Cheng W-G, Zhang X-P, Zhang S-J (2011) Synthesis of dimethyl carbonate from CO2 and ethylene oxide catalyzed by K2CO3-based binary salts in the presence of H2O. Green Chem 13(11):3213–3217. doi:10.1039/C1GC15812K

    CAS  Google Scholar 

  136. Fang S, Fujimoto K (1996) Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl Catal Gen 142(1):1–3. doi:10.1016/0926-860X(96)00081-6

    Google Scholar 

  137. S-i F, Bhanage BM, Ikushima Y, Arai M (2001) Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism. Green Chem 3(2):87–91. doi:10.1039/B100363L

    Google Scholar 

  138. Cai Q, Jin C, Lu B, Tangbo H, Shan Y (2005) Synthesis of dimethyl carbonate from methanol and carbon dioxide using potassium methoxide as catalyst under mild conditions. Catal Lett 103(3–4):225–228. doi:10.1007/s10562-005-7158-2

    CAS  Google Scholar 

  139. Wang H, Lu B, Cai QH, Wu F, Shan YK (2005) Synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by potassium hydroxide under mild conditions. Chin Chem Lett 16(9):1267

    CAS  Google Scholar 

  140. Cai Q, Lu B, Guo L, Shan Y (2009) Studies on synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Commun 10(5):605–609, http://dx.doi.org/10.1016/j.catcom.2008.11.002

    CAS  Google Scholar 

  141. Riduan SN, Zhang Y, Ying JY (2009) Conversion of carbon dioxide into methanol with silanes over N-heterocyclic carbene catalysts. Angew Chem Int Ed 48(18):3322–3325. doi:10.1002/anie.200806058

    CAS  Google Scholar 

  142. Huang F, Lu G, Zhao L, Li H, Wang Z-X (2010) The catalytic role of N-heterocyclic carbene in a metal-free conversion of carbon dioxide into methanol: a computational mechanism study. J Am Chem Soc 132(35):12388–12396. doi:10.1021/ja103531z

    CAS  Google Scholar 

  143. Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T (2012) A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2. Angew Chem 124(1):191–194. doi:10.1002/ange.201105516

    Google Scholar 

  144. Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T (2012) Recycling of carbon and silicon wastes: room temperature formylation of N–H bonds using carbon dioxide and polymethylhydrosiloxane. J Am Chem Soc 134(6):2934–2937. doi:10.1021/ja211527q

    CAS  Google Scholar 

  145. Jacquet O, Das Neves Gomes C, Ephritikhine M, Cantat T (2013) Complete catalytic deoxygenation of CO2 into formamidine derivatives. ChemCatChem 5(1):117–120. doi:10.1002/cctc.201200732

    CAS  Google Scholar 

  146. Stephan DW, Erker G (2010) Frustrated Lewis pairs: metal-free hydrogen activation and more. Angew Chem Int Ed 49(1):46–76. doi:10.1002/anie.200903708

    CAS  Google Scholar 

  147. Ashley AE, Thompson AL, O’Hare D (2009) Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH. Angew Chem Int Ed 48(52):9839–9843. doi:10.1002/anie.200905466

    CAS  Google Scholar 

  148. Berkefeld A, Piers WE, Parvez M (2010) Tandem frustrated Lewis pair/tris(pentafluorophenyl)borane-catalyzed deoxygenative hydrosilylation of carbon dioxide. J Am Chem Soc 132(31):10660–10661. doi:10.1021/ja105320c

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mirza Cokoja or Fritz E. Kühn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anthofer, M.H., Wilhelm, M.E., Cokoja, M., Kühn, F.E. (2014). Valorization of Carbon Dioxide to Organic Products with Organocatalysts. In: Bhanage, B., Arai, M. (eds) Transformation and Utilization of Carbon Dioxide. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44988-8_1

Download citation

Publish with us

Policies and ethics