Skip to main content

Finding an Evolutionary Solution to the Game of Mastermind with Good Scaling Behavior

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 7997)

Abstract

There are two main research issues in the game of Mastermind: one of them is finding solutions that are able to minimize the number of turns needed to find the solution, and another is finding methods that scale well when the size of the search space is increased. In this paper we will present a method that uses evolutionary algorithms to find fast solutions to the game of Mastermind that scale better with problem size than previously described methods; this is obtained by just fixing one parameter.

Keywords

  • Mastermind
  • Oracle games
  • Puzzles
  • Evolutionary algorithms
  • Parameter optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-44973-4_31
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-44973-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

References

  1. Meirovitz, M.: Board game (December 30 1980) US Patent 4,241,923

    Google Scholar 

  2. Knuth, D.E.: The computer as master mind. J. Recreational Math. 9(1), 1–6 (1976–1977)

    MathSciNet  Google Scholar 

  3. Montgomery, G.: Mastermind: improving the search. AI Expert 7(4), 40–47 (1992)

    Google Scholar 

  4. Berghman, L., Goossens, D., Leus, R.: Efficient solutions for mastermind using genetic algorithms. Compu. Oper. Res. 36(6), 1880–1885 (2009)

    CrossRef  MATH  Google Scholar 

  5. Runarsson, T.P., Merelo-Guervós, J.J.: Adapting heuristic mastermind strategies to evolutionary algorithms. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO 2010. SCI, vol. 284, pp. 255–267. Springer, Heidelberg (2010). ArXiV: http://arxiv.org/abs/0912.2415v1

    Google Scholar 

  6. Merelo-Guervós, J.J., Mora, A.M., Cotta, C., Runarsson, T.P.: An experimental study of exhaustive solutions for the mastermind puzzle. CoRR abs/1207.1315 (2012)

    Google Scholar 

  7. Kooi, B.: Yet another mastermind strategy. ICGA J. 28(1), 13–20 (2005)

    MathSciNet  Google Scholar 

  8. Cotta, C., Merelo Guervós, J.J., Mora Garćia, A.M., Runarsson, T.P.: Entropy-driven evolutionary approaches to the mastermind problem. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 421–431. Springer, Heidelberg (2010)

    Google Scholar 

  9. Merelo, J., Mora, A., Runarsson, T., Cotta, C.: Assessing efficiency of different evolutionary strategies playing mastermind. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 38–45, August 2010

    Google Scholar 

  10. Merelo, J.J., Cotta, C., Mora, A.: Improving and scaling evolutionary approaches to the mastermind problem. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 103–112. Springer, Heidelberg (2011)

    Google Scholar 

  11. Merelo-Guervós, J.J., Mora, A.M., Cotta, C.: Optimizing worst-case scenario in evolutionary solutions to the MasterMind puzzle. In: IEEE Congress on Evolutionary Computation, pp. 2669–2676. IEEE (2011)

    Google Scholar 

  12. Eiben, A.E., Smit, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgements.

This work is supported by projects TIN2011-28627-C04-02 and TIN2011-28627-C04-01 and -02 (ANYSELF), awarded by the Spanish Ministry of Science and Innovation and P08-TIC-03903 and P10-TIC-6083 (DNEMESIS) awarded by the Andalusian Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Fernández-Leiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merelo, J.J., Mora, A.M., Cotta, C., Fernández-Leiva, A.J. (2013). Finding an Evolutionary Solution to the Game of Mastermind with Good Scaling Behavior. In: Nicosia, G., Pardalos, P. (eds) Learning and Intelligent Optimization. LION 2013. Lecture Notes in Computer Science(), vol 7997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44973-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44973-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44972-7

  • Online ISBN: 978-3-642-44973-4

  • eBook Packages: Computer ScienceComputer Science (R0)