Abstract
Human pose estimation has been actively studied for decades. While traditional approaches rely on 2d data like images or videos, the development of Time-of-Flight cameras and other depth sensors created new opportunities to advance the field. We give an overview of recent approaches that perform human motion analysis which includes depth-based and skeleton-based activity recognition, head pose estimation, facial feature detection, facial performance capture, hand pose estimation and hand gesture recognition. While the focus is on approaches using depth data, we also discuss traditional image based methods to provide a broad overview of recent developments in these areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Klette, R., Tee, G.: Understanding human motion: A historic review. In: Rosenhahn, B., Klette, R., Metaxas, D. (eds.) Human Motion. Computational Imaging and Vision, vol. 36, pp. 1–22. Springer, Netherlands (2008)
Aggarwal, J.: Motion analysis: Past, present and future. In: Bhanu, B., Ravishankar, C.V., Roy-Chowdhury, A.K., Aghajan, H., Terzopoulos, D. (eds.) Distributed Video Sensor Networks, pp. 27–39. Springer, London (2011)
Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A.: Real-time human pose recognition in parts from single depth images. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Computing Surveys 43(2), 16:1–16:43 (2011)
Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(3), 311–324 (2007)
Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2), 90–126 (2006)
Poppe, R.: A survey on vision-based human action recognition. Image and Vision Computing 28(6), 976–990 (2010)
Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In: Workshop on Human Activity Understanding from 3D Data, pp. 9–14 (2010)
Wang, J., Liu, Z., Wu, Y., Yuan, J.: Mining actionlet ensemble for action recognition with depth cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1297 (2012)
Kurakin, A., Zhang, Z., Liu, Z.: A real time system for dynamic hand gesture recognition with a depth sensor. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1975–1979 (2012)
Oreifej, O., Liu, Z.: Hon4d: Histogram of oriented 4d normals for activity recognition from depth sequences. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)
Li, W., Zhang, Z., Liu, Z.: Expandable data-driven graphical modeling of human actions based on salient postures. IEEE Transactions on Circuits and Systems for Video Technology 18(11), 1499–1510 (2008)
Vieira, A.W., Nascimento, E.R., Oliveira, G.L., Liu, Z., Campos, M.F.M.: STOP: Space-time occupancy patterns for 3D action recognition from depth map sequences. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 252–259. Springer, Heidelberg (2012)
Wang, J., Liu, Z., Chorowski, J., Chen, Z., Wu, Y.: Robust 3D action recognition with random occupancy patterns. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 872–885. Springer, Heidelberg (2012)
Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: ACM International Conference on Multimedia, pp. 1057–1060 (2012)
Zhang, H., Parker, L.: 4-dimensional local spatio-temporal features for human activity recognition. In: International Conference on Intelligent Robots and Systems, pp. 2044–2049 (2011)
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences of the United States of America 101(suppl. 1), 5228–5235 (2004)
Lei, J., Ren, X., Fox, D.: Fine-grained kitchen activity recognition using rgb-d. In: ACM Conference on Ubiquitous Computing (2012)
Jalal, A., Uddin, M.Z., Kim, J.T., Kim, T.S.: Recognition of human home activities via depth silhouettes and transformation for smart homes. Indoor and Built Environment 21(1), 184–190 (2011)
Wang, Y., Huang, K., Tan, T.: Human activity recognition based on r transform. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Xia, L., Chen, C.C., Aggarwal, J.: View invariant human action recognition using histograms of 3d joints. In: Workshop on Human Activity Understanding from 3D Data, pp. 20–27 (2012)
Han, L., Wu, X., Liang, W., Hou, G., Jia, Y.: Discriminative human action recognition in the learned hierarchical manifold space. Image and Vision Computing 28(5), 836–849 (2010)
Johansson, G.: Visual motion perception. Scientific American (1975)
Ye, M., Wang, X., Yang, R., Ren, L., Pollefeys, M.: Accurate 3d pose estimation from a single depth image. In: IEEE International Conference on Computer Vision, pp. 731–738 (2011)
Criminisi, A., Shotton, J., Robertson, D., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: Menze, B., Langs, G., Tu, Z., Criminisi, A. (eds.) MICCAI 2010. LNCS, vol. 6533, pp. 106–117. Springer, Heidelberg (2011)
Campbell, L., Bobick, A.: Recognition of human body motion using phase space constraints. In: IEEE International Conference on Computer Vision, pp. 624–630 (1995)
Lv, F., Nevatia, R.: Recognition and segmentation of 3-D human action using HMM and multi-class adaBoost. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 359–372. Springer, Heidelberg (2006)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55(1), 119–139 (1997)
Lee, M.W., Nevatia, R.: Dynamic human pose estimation using markov chain monte carlo approach. In: IEEE Workshops on Application of Computer Vision, pp. 168–175 (2005)
Koppula, H.S., Gupta, R., Saxena, A.: Human activity learning using object affordances from rgb-d videos. CoRR abs/1208.0967 (2012)
Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affordances from rgb-d videos. CoRR abs/1210.1207 (2012)
Lai, K., Bo, L., Ren, X., Fox, D.: Sparse distance learning for object recognition combining rgb and depth information. In: International Conferences on Robotics and Automation, pp. 4007–4013 (2011)
Yang, X., Tian, Y.: Eigenjoints-based action recognition using naive-bayes-nearest-neighbor. In: Workshop on Human Activity Understanding from 3D Data, pp. 14–19 (2012)
Sung, J., Ponce, C., Selman, B., Saxena, A.: Human activity detection from rgbd images. In: Plan, Activity, and Intent Recognition (2011)
Sung, J., Ponce, C., Selman, B., Saxena, A.: Unstructured human activity detection from rgbd images. In: IEEE International Conference on Robotics and Automation, pp. 842–849 (2012)
McCallum, A., Freitag, D., Pereira, F.C.N.: Maximum entropy markov models for information extraction and segmentation. In: International Conference on Machine Learning, pp. 591–598 (2000)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)
Yao, A., Gall, J., Van Gool, L.: Coupled action recognition and pose estimation from multiple views. International Journal of Computer Vision 100(1), 16–37 (2012)
Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Transactions on Graphics 24, 677–685 (2005)
Gall, J., Yao, A., Razavi, N., Van Gool, L., Lempitsky, V.: Hough forests for object detection, tracking, and action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2011)
Tenorth, M., Bandouch, J., Beetz, M.: The TUM kitchen data set of everyday manipulation activities for motion tracking and action recognition. In: IEEE Workshop on Tracking Humans for the Evaluation of their Motion in Image Sequences (2009)
Fanelli, G., Dantone, M., Gall, J., Fossati, A., Van Gool, L.: Random forests for real time 3d face analysis. International Journal of Computer Vision 101(3), 437–458 (2013)
Murphy-Chutorian, E., Trivedi, M.: Head pose estimation in computer vision: A survey. Transactions on Pattern Analysis and Machine Intelligence 31(4), 607–626 (2009)
Jones, M., Viola, P.: Fast multi-view face detection. Technical Report TR2003-096, Mitsubishi Electric Research Laboratories (2003)
Huang, C., Ding, X., Fang, C.: Head pose estimation based on random forests for multiclass classification. In: International Conference on Pattern Recognition (2010)
Chen, L., Zhang, L., Hu, Y., Li, M., Zhang, H.: Head pose estimation using fisher manifold learning. In: Analysis and Modeling of Faces and Gestures (2003)
Balasubramanian, V.N., Ye, J., Panchanathan, S.: Biased manifold embedding: A framework for person-independent head pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)
Osadchy, M., Miller, M.L., LeCun, Y.: Synergistic face detection and pose estimation with energy-based models. In: Neural Information Processing Systems (2005)
Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)
Ramnath, K., Koterba, S., Xiao, J., Hu, C., Matthews, I., Baker, S., Cohn, J., Kanade, T.: Multi-view aam fitting and construction. International Journal of Computer Vision 76(2), 183–204 (2008)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: ACM International Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)
Storer, M., Urschler, M., Bischof, H.: 3d-mam: 3d morphable appearance model for efficient fine head pose estimation from still images. In: Workshop on Subspace Methods (2009)
Martins, P., Batista, J.: Accurate single view model-based head pose estimation. In: Automatic Face and Gesture Recognition (2008)
Vatahska, T., Bennewitz, M., Behnke, S.: Feature-based head pose estimation from images. In: International Conference on Humanoid Robots (2007)
Whitehill, J., Movellan, J.R.: A discriminative approach to frame-by-frame head pose tracking. In: Automatic Face and Gesture Recognition (2008)
Morency, L.P., Whitehill, J., Movellan, J.R.: Generalized adaptive view-based appearance model: Integrated framework for monocular head pose estimation. In: Automatic Face and Gesture Recognition (2008)
Breitenstein, M.D., Kuettel, D., Weise, T., Van Gool, L., Pfister, H.: Real-time face pose estimation from single range images. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)
Cai, Q., Gallup, D., Zhang, C., Zhang, Z.: 3D deformable face tracking with a commodity depth camera. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 229–242. Springer, Heidelberg (2010)
Morency, L.P., Sundberg, P., Darrell, T.: Pose estimation using 3d view-based eigenspaces. In: Automatic Face and Gesture Recognition (2003)
Seemann, E., Nickel, K., Stiefelhagen, R.: Head pose estimation using stereo vision for human-robot interaction. In: Automatic Face and Gesture Recognition (2004)
Mian, A., Bennamoun, M., Owens, R.: Automatic 3d face detection, normalization and recognition. In: 3D Data Processing, Visualization, and Transmission (2006)
Lu, X., Jain, A.K.: Automatic feature extraction for multiview 3d face recognition. In: Automatic Face and Gesture Recognition (2006)
Weise, T., Leibe, B., Van Gool, L.: Fast 3d scanning with automatic motion compensation. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)
Weise, T., Bouaziz, S., Li, H., Pauly, M.: Realtime performance-based facial animation. ACM Transactions on Graphics 30(4) (2011)
Breitenstein, M.D., Jensen, J., Høilund, C., Moeslund, T.B., Van Gool, L.: Head pose estimation from passive stereo images. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 219–228. Springer, Heidelberg (2009)
Fanelli, G., Gall, J., Van Gool, L.: Real time head pose estimation with random regression forests. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Fanelli, G., Weise, T., Gall, J., Van Gool, L.: Real time head pose estimation from consumer depth cameras. In: Mester, R., Felsberg, M. (eds.) DAGM 2011. LNCS, vol. 6835, pp. 101–110. Springer, Heidelberg (2011)
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3d face model for pose and illumination invariant face recognition. In: Advanced Video and Signal based Surveillance (2009)
Weise, T., Wismer, T., Leibe, B., Van Gool, L.: In-hand scanning with online loop closure. In: 3-D Digital Imaging and Modeling (2009)
Li, H., Adams, B., Guibas, L.J., Pauly, M.: Robust single-view geometry and motion reconstruction. ACM Transactions on Graphics 28(5) (2009)
Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9-10), 657–664 (2002)
Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2003)
Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23(12), 1080–2093 (2005)
Valstar, M., Martinez, B., Binefa, X., Pantic, M.: Facial point detection using boosted regression and graph models. In: IEEE Conference on Computer Vision and Pattern Recognition (2010)
Amberg, B., Vetter, T.: Optimal landmark detection using shape models and branch and bound slides. In: IEEE International Conference on Computer Vision (2011)
Belhumeur, P.N., Jacobs, D.W., Kriegman, D.J., Kumar, N.: Localizing parts of faces using a consensus of exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (2011)
Dantone, M., Gall, J., Fanelli, G., Van Gool, L.: Real-time facial feature detection using conditional regression forests. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
Felzenszwalb, P.F., Huttenlocher, D.P.: Pictorial structures for object recognition. International Journal of Computer Vision 61(1), 55–79 (2005)
Everingham, M., Sivic, J., Zisserman, A.: Hello! my name is... buffy - automatic naming of characters in tv video. In: British Machine Vision Conference (2006)
Cristinacce, D., Cootes, T.: Automatic feature localisation with constrained local models. Journal of Pattern Recognition 41(10), 3054–3067 (2008)
Mpiperis, I., Malassiotis, S., Strintzis, M.: Bilinear models for 3-d face and facial expression recognition. IEEE Transactions on Information Forensics and Security 3(3), 498–511 (2008)
Kakadiaris, I.A., Passalis, G., Toderici, G., Murtuza, M.N., Lu, Y., Karampatziakis, N., Theoharis, T.: Three-dimensional face recognition in the presence of facial expressions: An annotated deformable model approach. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4), 640–649 (2007)
Weise, T., Li, H., Van Gool, L., Pauly, M.: Face/off: live facial puppetry. In: Symposium on Computer Animation, pp. 7–16 (2009)
Sun, Y., Yin, L.: Automatic pose estimation of 3d facial models. In: International Conference on Pattern Recognition (2008)
Segundo, M., Silva, L., Bellon, O., Queirolo, C.: Automatic face segmentation and facial landmark detection in range images. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 40(5), 1319–1330 (2010)
Chang, K.I., Bowyer, K.W., Flynn, P.J.: Multiple nose region matching for 3d face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1695–1700 (2006)
Mehryar, S., Martin, K., Plataniotis, K., Stergiopoulos, S.: Automatic landmark detection for 3d face image processing. In: Evolutionary Computation (2010)
Colbry, D., Stockman, G., Jain, A.: Detection of anchor points for 3d face verification. In: IEEE Conference on Computer Vision and Pattern Recognition (2005)
Dorai, C., Jain, A.K.: COSMOS - A Representation Scheme for 3D Free-Form Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(10), 1115–1130 (1997)
Wang, Y., Chua, C., Ho, Y.: Facial feature detection and face recognition from 2d and 3d images. Pattern Recognition Letters 10(23), 1191–1202 (2002)
Chua, C.S., Jarvis, R.: Point signatures: A new representation for 3d object recognition. International Journal of Computer Vision 25, 63–85 (1997)
Yu, T.H., Moon, Y.S.: A novel genetic algorithm for 3d facial landmark localization. In: Biometrics: Theory, Applications and Systems (2008)
Ju, Q., O’keefe, S., Austin, J.: Binary neural network based 3d facial feature localization. In: International Joint Conference on Neural Networks (2009)
Zhao, X., Dellandréa, E., Chen, L., Kakadiaris, I.: Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 41(5), 1417–1428 (2011)
Nair, P., Cavallaro, A.: 3-d face detection, landmark localization, and registration using a point distribution model. IEEE Transactions on Multimedia 11(4), 611–623 (2009)
Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., Van Gool, L.: A 3-d audio-visual corpus of affective communication. IEEE Transactions on Multimedia 12(6), 591–598 (2010)
Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3d facial expression database for facial behavior research. In: International Conference on Automatic Face and Gesture Recognition (2006)
Lewis, J.P., Pighin, F.: Background mathematics. In: ACM SIGGRAPH Courses (2006)
Alexander, O., Rogers, M., Lambeth, W., Chiang, M., Debevec, P.: The digital emily project: photoreal facial modeling and animation. In: ACM SIGGRAPH Courses (2009)
Zhang, S., Huang, P.: High-resolution, real-time 3d shape acquisition. In: Workshop on Real-time 3D Sensors and Their Use (2004)
Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high resolution capture for modeling and animation. ACM Transactions on Graphics 23(3), 548–558 (2004)
Borshukov, G., Piponi, D., Larsen, O., Lewis, J.P., Tempelaar-Lietz, C.: Universal capture - image-based facial animation for “the matrix reloaded”. In: ACM SIGGRAPH Courses (2005)
Ma, W.C., Hawkins, T., Peers, P., Chabert, C.F., Weiss, M., Debevec, P.: Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In: Eurographics Conference on Rendering Techniques, pp. 183–194 (2007)
Wilson, C.A., Ghosh, A., Peers, P., Chiang, J.Y., Busch, J., Debevec, P.: Temporal upsampling of performance geometry using photometric alignment. ACM Transactions on Graphics 29(2) (2010)
Beeler, T., Bickel, B., Beardsley, P., Sumner, B., Gross, M.: High-quality single-shot capture of facial geometry. ACM Transactions on Graphics 29 (2010)
Bradley, D., Heidrich, W., Popa, T., Sheffer, A.: High resolution passive facial performance capture. ACM Transactions on Graphics 29(4) (2010)
Furukawa, Y., Ponce, J.: Dense 3d motion capture from synchronized video streams. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)
Breidt, M., Buelthoff, H., Curio, C.: Robust semantic analysis by synthesis of 3d facial motion. In: Automatic Face and Gesture Recognition (2011)
Savran, A., Celiktutan, O., Akyol, A., Trojanová, J., Dibeklioglu, H., Esenlik, S., Bozkurt, N., Demirkir, C., Akagunduz, E., Caliskan, K., Alyuz, N., Sankur, B., Ulusoy, I., Akarun, L., Sezgin, T.M.: 3d face recognition performance under adversarial conditions. In: Workshop on Multimodal Interfaces, pp. 87–102 (2007)
Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3d dynamic facial expression database. In: Automatic Face and Gesture Recognition (2008)
Gupta, S., Markey, M., Bovik, A.: Anthropometric 3d face recognition. International Journal of Computer Vision 90(3), 331–349 (2010)
Colombo, A., Cusano, C., Schettini, R.: Umb-db: A database of partially occluded 3d faces. In: Workshop on Benchmarking Facial Image Analysis Technologies, pp. 2113–2119 (2011)
Huynh, T., Min, R., Dugelay, J.-L.: An efficient LBP-based descriptor for facial depth images applied to gender recognition using RGB-D face data. In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728, pp. 133–145. Springer, Heidelberg (2013)
Ballan, L., Taneja, A., Gall, J., Van Gool, L., Pollefeys, M.: Motion capture of hands in action using discriminative salient points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 640–653. Springer, Heidelberg (2012)
Erol, A., Bebis, G., Nicolescu, M., Boyle, R.D., Twombly, X.: Vision-based hand pose estimation: A review. Computer Vision and Image Understanding 108(1-2), 52–73 (2007)
Lu, S., Metaxas, D., Samaras, D., Oliensis, J.: Using multiple cues for hand tracking and model refinement. In: IEEE Conference on Computer Vision and Pattern Recognition (2003)
de La Gorce, M., Fleet, D.J., Paragios, N.: Model-based 3d hand pose estimation from monocular video. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(9), 1793–1805 (2011)
Delamarre, Q., Faugeras, O.D.: 3d articulated models and multiview tracking with physical forces. Computer Vision and Image Understanding 81(3), 328–357 (2001)
Bray, M., Koller-Meier, E., Van Gool, L.: Smart particle filtering for high-dimensional tracking. Computer Vision and Image Understanding 106(1), 116–129 (2007)
Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based 3d tracking of hand articulations using kinect. In: British Machine Vision Conference (2011)
Rehg, J.M., Kanade, T.: Visual tracking of high dof articulated structures: an application to human hand tracking. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 35–46. Springer, Heidelberg (1994)
Stenger, B., Mendonca, P., Cipolla, R.: Model-based 3D tracking of an articulated hand. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 310–315 (2001)
MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)
Heap, T., Hogg, D.: Towards 3d hand tracking using a deformable model. In: International Conference on Automatic Face and Gesture Recognition (1996)
Wu, Y., Lin, J., Huang, T.: Capturing natural hand articulation. In: IEEE International Conference on Computer Vision, pp. 426–432 (2001)
Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual Hand Tracking Using Nonparametric Belief Propagation. In: Workshop on Generative Model Based Vision, pp. 189–189 (2004)
Hamer, H., Schindler, K., Koller-Meier, E., Van Gool, L.: Tracking a hand manipulating an object. In: IEEE International Conference on Computer Vision, pp. 1475–1482 (2009)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Markerless and efficient 26-DOF hand pose recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 744–757. Springer, Heidelberg (2011)
Keskin, C., Kra, F., Kara, Y., Akarun, L.: Real time hand pose estimation using depth sensors. In: Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K. (eds.) Consumer Depth Cameras for Computer Vision. Advances in Computer Vision and Pattern Recognition, pp. 119–137. Springer, London (2013)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)
State, A., Coleca, F., Barth, E., Martinetz, T.: Hand tracking with an extended self-organizing map. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 115–124. Springer, Heidelberg (2013)
Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3d hand pose reconstruction using specialized mappings. In: IEEE International Conference on Computer Vision, pp. 378–387 (2001)
Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 432–439 (2003)
de Campos, T., Murray, D.: Regression-based hand pose estimation from multiple cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 782–789 (2006)
Stenger, B., Thayananthan, A., Torr, P.: Model-based hand tracking using a hierarchical bayesian filter. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1372–1384 (2006)
Romero, J., Kjellström, H., Kragic, D.: Hands in action: Real-time 3d reconstruction of hands in interaction with objects. In: International Conferences on Robotics and Automation, pp. 458–463 (2010)
Lee, C.S., Chun, S.Y., Park, S.W.: Articulated hand configuration and rotation estimation using extended torus manifold embedding. In: International Conference on Pattern Recognition, pp. 441–444 (2012)
Hamer, H., Gall, J., Urtasun, R., Van Gool, L.: Data-driven animation of hand-object interactions. In: International Conference on Automatic Face and Gesture Recognition, pp. 360–367 (2011)
Hamer, H., Gall, J., Weise, T., Van Gool, L.: An object-dependent hand pose prior from sparse training data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 671–678 (2010)
Uebersax, D., Gall, J., den Bergh, M.V., Van Gool, L.: Real-time sign language letter and word recognition from depth data. In: IEEE Workshop on Human Computer Interaction: Real-Time Vision Aspects of Natural User Interfaces (2011)
Ye, Y., Liu, C.K.: Synthesis of detailed hand manipulations using contact sampling. ACM Transactions on Graphics 31(4), 41 (2012)
Oikonomidis, I., Kyriazis, N., Argyros, A.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: IEEE International Conference on Computer Vision (2011)
Kim, D., Hilliges, O., Izadi, S., Butler, A.D., Chen, J., Oikonomidis, I., Olivier, P.: Digits: Freehand 3d interactions anywhere using a wrist-worn gloveless sensor. In: ACM Symposium on User Interface Software and Technology, pp. 167–176 (2012)
Zhao, W., Chai, J., Xu, Y.Q.: Combining marker-based mocap and rgb-d camera for acquiring high-fidelity hand motion data. In: Symposium on Computer Animation, pp. 33–42 (2012)
Starner, T., Weaver, J., Pentland, A.: Real-time american sign language recognition using desk and wearable computer based video. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(12), 1371–1375 (1998)
Derpanis, K.G., Wildes, R.P., Tsotsos, J.K.: Hand gesture recognition within a linguistics-based framework. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 282–296. Springer, Heidelberg (2004)
Ong, S., Ranganath, S.: Automatic sign language analysis: A survey and the future beyond lexical meaning. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 873–891 (2005)
Pei, T., Starner, T., Hamilton, H., Essa, I., Rehg, J.: Learnung the basic units in american sign language using discriminative segmental feature selection. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4757–4760 (2009)
Yang, H.D., Sclaroff, S., Lee, S.W.: Sign language spotting with a threshold model based on conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(7), 1264–1277 (2009)
Theodorakis, S., Pitsikalis, V., Maragos, P.: Model-level data-driven sub-units for signs in videos of continuous sign language. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2262–2265 (2010)
Zafrulla, Z., Brashear, H., Hamilton, H., Starner, T.: A novel approach to american sign language (asl) phrase verification using reversed signing. In: IEEE Workshop on CVPR for Human Communicative Behavior Analysis, pp. 48–55 (2010)
Dreuw, P., Ney, H., Martinez, G., Crasborn, O., Piater, J., Moya, J.M., Wheatley, M.: The signspeak project - bridging the gap between signers and speakers. In: International Conference on Language Resources and Evaluation (2010)
Liu, X., Fujimura, K.: Hand gesture recognition using depth data. In: International Conference on Automatic Face and Gesture Recognition (2004)
Mo, Z., Neumann, U.: Real-time hand pose recognition using low-resolution depth images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1499–1505 (2006)
Breuer, P., Eckes, C., Müller, S.: Hand gesture recognition with a novel IR time-of-flight range camera–A pilot study. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 247–260. Springer, Heidelberg (2007)
Soutschek, S., Penne, J., Hornegger, J., Kornhuber, J.: 3-d gesture-based scene navigation in medical imaging applications using time-of-flight cameras. In: Workshop on Time of Flight Camera based Computer Vision (2008)
Kollorz, E., Penne, J., Hornegger, J., Barke, A.: Gesture recognition with a time-of-flight camera. International Journal of Intelligent Systems Technologies and Applications 5, 334–343 (2008)
Penne, J., Soutschek, S., Fedorowicz, L., Hornegger, J.: Robust real-time 3d time-of-flight based gesture navigation. In: International Conference on Automatic Face and Gesture Recognition (2008)
Li, Z., Jarvis, R.: Real time hand gesture recognition using a range camera. In: Australasian Conference on Robotics and Automation (2009)
Takimoto, H., Yoshimori, S., Mitsukura, Y., Fukumi, M.: Classification of hand postures based on 3d vision model for human-robot interaction. In: International Symposium on Robot and Human Interactive Communication, pp. 292–297 (2010)
Lahamy, H., Litchi, D.: Real-time hand gesture recognition using range cameras. In: Canadian Geomatics Conference (2010)
Van den Bergh, M., Van Gool, L.: Combining rgb and tof cameras for real-time 3d hand gesture interaction. In: IEEE Workshop on Applications of Computer Vision (2011)
Marnik, J.: The polish finger alphabet hand postures recognition using elastic graph matching. In: Kurzynski, M., Puchala, E., Wozniak, M., Zolnierek, A. (eds.) Computer Recognition Systems 2. ASC, vol. 45, pp. 454–461. Springer, Heidelberg (2007)
Incertis, I., Garcia-Bermejo, J., Casanova, E.: Hand gesture recognition for deaf people interfacing. In: International Conference on Pattern Recognition, pp. 100–103 (2006)
Lockton, R., Fitzgibbon, A.W.: Real-time gesture recognition using deterministic boosting. In: British Machine Vision Conference (2002)
Liwicki, S., Everingham, M.: Automatic recognition of fingerspelled words in british sign language. In: IEEE Workshop on CVPR for Human Communicative Behavior Analysis (2009)
Kelly, D., Mc Donald, J., Markham, C.: A person independent system for recognition of hand postures used in sign language. Pattern Recognition Letters 31, 1359–1368 (2010)
Amin, M., Yan, H.: Sign language finger alphabet recognition from gabor-pca representation of hand gestures. In: Machine Learning and Cybernetics (2007)
Munib, Q., Habeeb, M., Takruri, B., Al-Malik, H.: American sign language (asl) recognition based on hough transform and neural networks. Expert Systems with Applications 32(1), 24–37 (2007)
Tzionas, D., Gall, J.: A comparison of directional distances for hand pose estimation. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 131–141. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ye, M., Zhang, Q., Wang, L., Zhu, J., Yang, R., Gall, J. (2013). A Survey on Human Motion Analysis from Depth Data. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds) Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Lecture Notes in Computer Science, vol 8200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44964-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-44964-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-44963-5
Online ISBN: 978-3-642-44964-2
eBook Packages: Computer ScienceComputer Science (R0)