Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8200))

Abstract

Mirroring is one of the fundamental light/surface interactions occurring in the real world. Surfaces often cause specular reflection, making it necessary to design robust geometry recovery algorithms for many practical situations. In these applications the specular nature of the surface is a challenge. On the other side, mirrors, with their unique reflective properties, can be used to improve our sensing modalities, enabling applications such as surround, stereo and light field imaging. In these scenarios the specular interactions are highly desirable. Both of these aspects, the utilization and circumvention of mirrors are present in a significant amount of publications in different scientific areas. These publications are covering a large number of different problem statements as well as many different approaches to solutions. In the chapter we will focus on a collection and classification of the work in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Smith, W.J.: Modern Optical Engineering, 4th edn. McGraw Hill Professional (2008)

    Google Scholar 

  2. Reshetouski, I., Manakov, A., Seidel, H.P., Ihrke, I.: Three-Dimensional Kaleidoscopic Imaging. In: Proc. CVPR, pp. 353–360 (2011)

    Google Scholar 

  3. Sossinsky, A.B.: Geometries, vol. 64. American Mathematical Soc. (2012)

    Google Scholar 

  4. Gluckman, J., Nayar, S.K.: Rectified Catadioptric Stereo Sensors. In: Proc. CVPR, pp. 380–387 (2000)

    Google Scholar 

  5. Wu, H.H.P., Chang, S.H.: Design of Stereoscopic Viewing System Based on a Compact Mirror and Dual Monitor. Optical Engineering 49(2), 027401-1–027401-6 (2010)

    Google Scholar 

  6. Gluckman, J., Nayar, S.K.: A Real-Time Catadioptric Stereo System Using Planar Mirrors. In: Proc. of Image Understanding Workshop (1998)

    Google Scholar 

  7. Gluckman, J., Nayar, S.: Rectified Catadioptric Stereo Sensors. IEEE Trans. PAMI 24(2), 224–236 (2002)

    Article  Google Scholar 

  8. Mitsumoto, H., Tamura, S., Okazaki, K., Kajimi, N., Fukui, Y.: 3-D Reconstruction Using Mirror Images Based on a Plane Symmetry Recovering Method. IEEE Trans. PAMI 14, 941–946 (1992)

    Article  Google Scholar 

  9. Ihrke, I., Stich, T., Gottschlich, H., Magnor, M., Seidel, H.P.: Fast Incident Light Field Acquisition and Rendering. WSCG 16(1-3), 25–32 (2008)

    Google Scholar 

  10. Murray, D.W.: Recovering Range using Virtual Multi-Camera Stereo. CVIU 61(2), 285–291 (1995)

    Google Scholar 

  11. Hu, B., CRV: It’s All Done with Mirrors: Calibration-and-Correspondence-Free 3D Reconstruction. In: Proc. CRV, pp. 148–154 (2009)

    Google Scholar 

  12. Sen, P., Chen, B., Garg, G., Marschner, S.R., Horowitz, M., Levoy, M., Lensch, H.P.A.: Dual photography. ACM TOG 24, 745–755 (2005)

    Article  Google Scholar 

  13. Fuchs, M., Kächele, M., Rusinkiewicz, S.: Design and Fabrication of Faceted Mirror Arrays for Light Field Capture. In: Proc. VMV, pp. 1–8 (2012)

    Google Scholar 

  14. Levoy, M., Chen, B., Vaish, V., Horowitz, M., McDowall, I., Bolas, M.: Synthetic Aperture Confocal Imaging. ACM TOG 23, 825–834 (2004)

    Article  Google Scholar 

  15. Mukaigawa, Y., Tagawa, S., Kim, J., Raskar, R., Matsushita, Y., Yagi, Y.: Hemispherical confocal imaging using turtleback reflector. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 336–349. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Weyrich, T., Peers, P., Matusik, W., Rusinkiewicz, S.: Fabricating Microgeometry for Custom Surface Reflectance. ACM TOG 28(3), 32:1–32:6 (2009)

    Google Scholar 

  17. Aggarwal, M., Ahuja, N.: Split aperture imaging for high dynamic range. In: Proc. ICCV, vol. 2, pp. 10–17 (2001)

    Google Scholar 

  18. Tan, K.H., Hua, H., Ahuja, N.: Multiview Panoramic Cameras Using Mirror Pyramids. IEEE Trans. PAMI 26(7), 941–946 (2004)

    Article  Google Scholar 

  19. Harvey, A.R., Fletcher-Holmes, D.W., Gorman, A.: Spectral Imaging in a Snapshot. In: Proc. SPIE, vol. 5694, pp. 1–10 (2005)

    Google Scholar 

  20. Gao, L., Kester, R.T., Tkaczyk, T.S.: Compact Image Slicing Spectrometer (ISS) for Hyperspectral Fluorescence Microscopy. Optics Express 17(15), 12293–12308 (2009)

    Article  Google Scholar 

  21. Gorman, A., Fletcher-Holmes, D.W., Harvey, A.R.: Generalization of the Lyot Filter and its Application to Snapshot Spectral Imaging. Optics Express 18(6), 5602–5608 (2010)

    Article  Google Scholar 

  22. McGuire, M., Matusik, W., Pfister, H., Chen, B., Hughes, J.F., Nayar, S.K.: Optical Splitting Trees for High-Precision Monocular Imaging. IEEE Comput. Graph. & Appl. 27(2), 32–42 (2007)

    Article  Google Scholar 

  23. Wetzstein, G., Ihrke, I., Lanman, D., Heidrich, W.: Computational plenoptic imaging. Computer Graphics Forum 30(8), 2397–2426 (2011)

    Article  Google Scholar 

  24. Zhou, C., Nayar, S.: Computational Cameras: Convergence of Optics and Processing. IEEE Trans. IP 20(12), 3322–3340 (2011)

    Google Scholar 

  25. Lanman, D., Crispell, D., Taubin, G.: Surround Structured Lighting for Full Object Scanning. In: Proc. 3DIM, pp. 107–116 (2007)

    Google Scholar 

  26. Huang, P.H., Lai, S.H.: Contour-Based Structure from Reflection. In: Proc. CVPR, pp. 165–178 (2006)

    Google Scholar 

  27. Forbes, K., Nicolls, F., de Jager, G., Voigt, A.: Shape-from-Silhouette with Two Mirrors and an Uncalibrated Camera. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 165–178. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Lanman, D., Crispell, D., Taubin, G.: Surround Structured Lighting: 3-D Scanning with Orthographic Illumination. CVIU (113), 1107–1117 (2009)

    Google Scholar 

  29. Ying, X., Peng, K., Ren, R., Zha, H.: Geometric Properties of Multiple Reflections in Catadioptric Camera with Two Planar Mirrors. In: Proc. CVPR, pp. 1–8 (2010)

    Google Scholar 

  30. Gluckman, J., Nayar, S.K.: Ego-Motion and Omnidirectional Cameras. In: Proc. ICCV, pp. 999–1005 (1998)

    Google Scholar 

  31. Gluckman, J., Nayar, S.K.: Real-Time Omnidirectional and Panoramic Stereo. In: Proc. of Image Understanding Workshop (1998)

    Google Scholar 

  32. Nayar, S.: Catadioptric Omnidirectional Camera. In: Proc. CVPR, pp. 482–488 (1997)

    Google Scholar 

  33. Chahl, J.S., Srinivasan, M.V.: Reflective Surfaces for Panoramic Imaging. Appl. Optics 36(31), 8275–8285 (1997)

    Article  Google Scholar 

  34. Hicks, R.A., Bajcsy, R.: Catadioptric Sensors that Approximate Wide-angle Perspective Projections. In: Proc. CVPR, pp. 1–7 (2000)

    Google Scholar 

  35. Hicks, R.A.: Designing a Mirror to Realize a Given Projection. JOSA 22(2), 323–330 (2005)

    Article  Google Scholar 

  36. Srinivasan, M.V.: A New Class of Mirrors for Wide-Angle Imaging. In: Proc. OMNIVIS, pp. 1–8 (2003)

    Google Scholar 

  37. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Designing Mirrors for Catadioptric Systems that Minimize Image Errors. In: Proc. OMNIVIS, pp. 1–8 (2004)

    Google Scholar 

  38. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Framework for Designing Catadioptric Projection and Imaging Systems. In: Proc. OMNIVIS, pp. 1–8 (2003)

    Google Scholar 

  39. Baker, S., Nayar, S.K.: A Theory of Catadioptric Image Formation. In: Proc. ICCV, pp. 35–42 (1998)

    Google Scholar 

  40. Baker, S., Nayar, S.K.: A Theory of Single-Viewpoint Catadioptric Image Formation. IJCV 35(2), 175–196 (1999)

    Article  Google Scholar 

  41. Zhang, L., Nayar, S.K.: Projection Defocus Analysis for Scene Capture and Image Display. ACM TOG 25, 907–915 (2006)

    Article  Google Scholar 

  42. Kuthirummal, S., Nayar, S.K.: Multiview Radial Catadioptric Imaging for Scene Capture. ACM TOG 25(3) (2006)

    Google Scholar 

  43. Unger, J., Wenger, A., Hawkins, T., Gardner, A., Debevec, P.: Capturing and Rendering with Incident Light Fields. In: Proc. EGWR, pp. 141–149 (2003)

    Google Scholar 

  44. Taguchi, Y., Agrawal, A., Veeraraghavan, A., Ramalingam, S., Raskar, R.: Axial-Cones: Modeling Spherical Catadioptric Cameras for Wide-Angle Light Field Rendering. ACM Trans. Graph. 29, 172:1–172:8 (2010)

    Google Scholar 

  45. Lanman, D., Crispell, D., Wachs, M., Taubin, G.: Spherical Catadioptric Arrays: Construction, Multi-View Geometry, and Calibration. In: Proc. 3DPVT, pp. 81–88 (2006)

    Google Scholar 

  46. Ding, Y., Yu, J., Sturm, P.: Multiperspective Stereo Matching and Volumetric Reconstruction. In: Proc. ICCV, pp. 1827–1834 (2009)

    Google Scholar 

  47. Nayar, S.K.: Sphereo: Determining Depth using Two Specular Spheres and a Single Camera. In: SPIE Optics, Illumination, and Image Sensing for Machine Vision III, vol. 1005, pp. 245–254 (1988)

    Google Scholar 

  48. Lensch, H.P.A., Kautz, J., Goesele, M., Heidrich, W., Seidel, H.P.: Image-based Reconstruction of Spatial Appearance and Geometric Detail. ACM TOG 22(2), 234–257 (2003)

    Article  Google Scholar 

  49. Nene, S., Nayar, S.: Stereo with Mirrors. In: Proc. ICCV, pp. 1087–1094 (1998)

    Google Scholar 

  50. Nayar, S., Peri, V.: Folded Catadioptric Cameras. In: Proc. CVPR, vol. 2, pp. 217–223 (1999)

    Google Scholar 

  51. Jang, G., Kim, S., Kweon, I.: Single Camera Catadioptric Stereo System. In: Proc. OMNIVIS, pp. 1–8 (2005)

    Google Scholar 

  52. Lanman, D., Wachs, M., Taubin, G., Cukierman, F.: Reconstructing a 3D Line from a Single Catadioptric Image. In: Proc. 3DPVT, pp. 1–8 (2006)

    Google Scholar 

  53. Bimber, O., Iwai, D., Wetzstein, G., Grundhfer, A.: The Visual Computing of Projector-Camera Systems. CGF 27(8), 2219–2245 (2008)

    Google Scholar 

  54. Fasano, A., Callieri, M., Cignoni, P., Scopigno, R.: Exploiting mirrors for laser stripe 3d scanning. In: Proc. of 4th International Conference on 3D Digital Imaging and Modeling (3DIM 2003), Banff, Canada (2003)

    Google Scholar 

  55. Ihrke, I., Reshetouski, I., Manakov, A., Tevs, A., Wand, M., Seidel, H.P.: A Kaleidoscopic Approach to Surround Geometry and Reflectance Acquisition. In: Proceedings of IEEE International Workshop on Computational Cameras and Displays, pp. 29–36 (2012)

    Google Scholar 

  56. Fujii, K., Grossberg, M., Nayar, S.: A Projector-Camera System with Real-Time Photometric Adaptation for Dynamic Environments. In: Proc. CVPR, vol. 2, pp. 1180–1187 (2005)

    Google Scholar 

  57. Garg, G.G., Talvala, E.V., Levoy, M., Lensch, H.P.A.: Symmetric Photography: Exploiting Data-sparseness in Reflectance Fields. In: Proc. EGSR, pp. 251–262 (June 2006)

    Google Scholar 

  58. Ghosh, A., Achutha, S., Heidrich, W., O’Toole, M.: BRDF Acquisition with Basis Illumination. In: Proc. ICCV, pp. 183–197 (2007)

    Google Scholar 

  59. Ghosh, A., Heidrich, W., Achutha, S., O’Toole, M.: A Basis Illumination Approach to BRDF Measurement. IJCV 90(2), 183–197 (2010)

    Article  Google Scholar 

  60. Holroyd, M., Lawrence, J., Zickler, T.: A Coaxial Optical Scanner for Synchronous Acquisition of 3D Geometry and Surface Reflectance. ACM TOG 29(4), article no. 99 (2010)

    Google Scholar 

  61. Han, J.Y., Perlin, K.: Measuring Bidirectional Texture Reflectance with a Kaleidoscope. In: Proc. SIGGRAPH, pp. 741–748 (2003)

    Google Scholar 

  62. Bangay, S., Radloff, J.D.: Kaleidoscope Configurations for Reflectance Measurement. In: Proc. AFRIGRAPH, pp. 161–170 (2004)

    Google Scholar 

  63. Ding, Y., Xiao, J., Tan, K.H., Yu, J.: Catadioptric Projectors. In: Proc. CVPR, pp. 2528–2535 (2009)

    Google Scholar 

  64. Dana, K.: BRDF/BTF Measurement Device. In: Proc. ICCV, pp. 460–466 (2001)

    Google Scholar 

  65. Dana, K.J., Wang, J.: Device for Convenient Measurement of Spatially Varying Bidirectional Reflectance. JOSA 21, 1–12 (2004)

    Article  Google Scholar 

  66. Mukaigawa, Y., Sumino, K., Yagi, Y.: High-Speed Measurement of BDRF Using an Ellipsoidal Mirror and a Projector. In: Proc. CVPR, pp. 1–8 (2007)

    Google Scholar 

  67. Mukaigawa, Y., Sumino, K., Yagi, Y.: Multiplexed Illumination for Measuring BRDF Using an Ellipsoidal Mirror and a Projector. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 246–257. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  68. Bouguet, J.Y.: Camera Calibration Toolbox for Matlab (2005)

    Google Scholar 

  69. Mariottini, G.L., Scheggi, S., Morbidi, F., Prattichizzo, D.: Planar Catadioptric Stereo: Single and Multi-View Geometry for Calibration and Localization. In: Proc. ICRA, pp. 2711–2716 (2009)

    Google Scholar 

  70. Ramalingam, S., Bouaziz, S., Sturm, P., Torr, P.H.: The Light-Path Less Traveled. In: Proc. CVPR, pp. 3145–3152 (2011)

    Google Scholar 

  71. Reshetouski, I., Manakov, A., Bandhari, A., Raskar, R., Seidel, H.P., Ihrke, I.: Discovering the Structure of a Planar Mirror System from Multiple Observations of a Single Point. In: Proc. CVPR, pp. 89–96 (2013)

    Google Scholar 

  72. Ihrke, I., Kutulakos, K.N., Lensch, H.P.A., Magnor, M., Heidrich, W.: Transparent and Specular Object Reconstruction. CGF 29(8), 2400–2426 (2010)

    Google Scholar 

  73. Sturm, P., Ramalingam, S., Tardif, J.P., Gasparini, S., Barreto, J.: Camera Models and Fundamental Concepts used in Geometric Computer Vision. In: Foundations and Trends in Computer Graphics and Vision, vol. 6, pp. 1–183. Now Publisher Inc. (2010)

    Google Scholar 

  74. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: A Perspective on Distortions. In: Proc. CVPR, pp. 594–601 (2003)

    Google Scholar 

  75. Yu, J., McMillan, L., Sturnm, P.: Multi-Prespective Modelling, Rendering and Imaging. CGF 29(1), 227–246 (2010)

    Google Scholar 

  76. Swaminathan, R., Grossberg, M.D., Nayar, S.K.: Caustics of Catadioptric Cameras. In: Proc. ICCV, pp. 2–9 (2001)

    Google Scholar 

  77. Geyer, C., Danillidis, K.: Catadioptric Projective Geometry. IJCV 45(3), 223–243 (2001)

    Article  MATH  Google Scholar 

  78. Geyer, C., Danillidis, K.: Paracatadioptric Camera Calibration. IEEE Trans. PAMI 24, 687–695 (2002)

    Article  Google Scholar 

  79. Agrawal, A., Taguchi, Y., Ramalingam, S.: Analytical Forward Projection for Axial Non-Central Dioptric & Catadioptric Cameras. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 129–143. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  80. Agrawal, A., Taguchi, Y., Ramalingam, S.: Beyond Alhazen’s Problem: Analytical Projection Model for Non-Central Catadioptric Cameras with Quadric Mirrors. In: Proc. CVPR, pp. 2993–3000 (2011)

    Google Scholar 

  81. Geyer, C., Danillidis, K.: Catadioptric Camera Calibration. In: Proc. ICCV, vol. 1, pp. 398–404 (1999)

    Google Scholar 

  82. Ding, Y., Yu, J.: Recovering Shape Characteristics on Near-Flat Specular Surfaces. In: Proc. CVPR, pp. 1–8 (2008)

    Google Scholar 

  83. Ding, Y., Yu, J., Sturm, P.F.: Recovering Specular Surfaces using Curved Line Images. In: Proc. CVPR, pp. 2326–2333 (2009)

    Google Scholar 

  84. Tarini, M., Lensch, H.P.A., Goesele, M., Seidel, H.P.: 3D Acquisition of Mirroring Objects. Graphical Models 67(4), 233–259 (2005)

    Article  Google Scholar 

  85. Bonfort, T., Sturm, P., Gargallo, P.: General Specular Surface Triangulation. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 872–881. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  86. Liu, M., Hartley, R., Salzmann, M.: Mirror Surface Reconstruction from a Single Image. In: Proc. CVPR, pp. 129–136 (June 2013)

    Google Scholar 

  87. Kang, S.B.: Catadioptric Self-Calibration. In: Proc. CVPR, pp. 201–207 (2000)

    Google Scholar 

  88. Svoboda, T., Pajdla, T., Hlaváč, V.: Epipolar Geometry for Panoramic Cameras. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 218–231. Springer, Heidelberg (1998)

    Google Scholar 

  89. Svoboda, T., Pajdla, T.: Epipolar Geometry for Central Catadioptric Cameras. IJCV 49(1), 23–37 (2002)

    Article  MATH  Google Scholar 

  90. Agrawal, A., Ramalingam, S.: Single Image Calibration of Multi-Axial Imaging Systems. In: Proc. CVPR, pp. 1399–1406 (2013)

    Google Scholar 

  91. Kutulakos, K.N., Steger, E.: A Theory of Refractive and Specular 3D Shape by Light-Path Triangulation. IJCV 76(1), 13–29 (2008)

    Article  Google Scholar 

  92. Scheuing, J., Yang, B.: Disambiguation of tdoa estimates in multi-path multi-source environments (datemm). IEEE ICASSP 4, 837–840 (2006)

    Google Scholar 

  93. Ajdler, T., Sbaiz, L., Vetterli, M.: The Plenacoustic Function and its Sampling. IEEE Transactions on Signal Processing 54(10), 3790–3804 (2006)

    Article  Google Scholar 

  94. Allen, J., Berkley, D.: Image method for efficiently simulating small-room acoustics. The Journal of the Acoustical Society of America 65(4), 943–950 (1979)

    Article  Google Scholar 

  95. Borish, J.: Extension of the Image Model to Arbitrary Polyhedra. Journal of the Acoustic Society of America 75(6), 1827–1836 (1984)

    Article  Google Scholar 

  96. Ribeiro, F., Florencio, D., Ba, D., Zhang, C.: Geometrically Constrained Room Modeling With Compact Microphone Arrays. IEEE Transactions on Audio, Speech, and Language Processing 20(5), 1449–1460 (2012)

    Article  Google Scholar 

  97. Antonacci, F., Filos, J., Thomas, M.R.P., Habets, E., Sarti, A., Naylor, P.A., Tubaro, S.: Inference of room geometry from acoustic impulse responses. IEEE Trans. on Audio, Speech and Language Processing 20(10), 2683–2695 (2012)

    Article  Google Scholar 

  98. Tervo, S., Tossavainen, T.: 3D Room Geometry Estimation from Measured Impulse Responses. In: Proc. ICASSP, pp. 513–516 (2012)

    Google Scholar 

  99. Kirmani, A., Hutchison, T., Davis, J., Raskar, R.: Looking around the Corner using Transient Imaging. In: Proc. ICCV, pp. 159–166 (2009)

    Google Scholar 

  100. Heide, F., Hullin, M., Gregson, J., Heidrich, W.: Low-Budget Transient Imaging using Photonic Mixer Devices. ACM TOG 32(4) (to appear, 2013)

    Google Scholar 

  101. Velten, A., Willwacher, T., Gupta, O., Veeraraghavan, A., Bawendi, M., Raskar, R.: Recovering Three-Dimensional Shape around a Corner using Ultrafast Time-of-Flight Imaging. Nat. Comm. 3, 745 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reshetouski, I., Ihrke, I. (2013). Mirrors in Computer Graphics, Computer Vision and Time-of-Flight Imaging. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds) Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. Lecture Notes in Computer Science, vol 8200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44964-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44964-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44963-5

  • Online ISBN: 978-3-642-44964-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics