Advertisement

Introduction

  • Po-Yuan ChenEmail author
Chapter
Part of the SpringerBriefs in Physics book series (SpringerBriefs in Physics)

Abstract

The transporting behavior of colloidal particles generated by external electric potential, temperature, or gradient of solute concentration in continuous phase is known as mobility. In this study, we concentrate on consideration of mobility of a single spherical colloidal particle parallelling a single infinite plate or two infinite plane walls, and the motion velocity of the particles will be calculated with the boundary collocation method and the reflection method.

Keywords

Interfacial Tension Colloidal Particle Aerosol Particle Semipermeable Membrane Plane Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Acrivos, A., Jeffrey, D.J., Saville, D.A.: Particle migration in Suspensions by thermocapillary or electrophoretic motion. J. Fluid. Mech. 212, 95 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. Anderson, J.L.: Movement of a semipermeable vesicle through an osmotic gradient. Phys. Fluids. 26, 2871 (1983)ADSCrossRefzbMATHGoogle Scholar
  3. Anderson, J.L.: Shape and permeability effects on osmophoresis. PhysicoChem. Hydrodyn. 5, 205 (1984)Google Scholar
  4. Anderson, J.L.: Droplet interactions in thermocapillary motion. Int. J. Multiph. Flow. 11, 813 (1985)CrossRefzbMATHGoogle Scholar
  5. Anderson, J.L.: Transport mechanisms of biological colloids. Ann. N. Y. Acad. Sci. (Biochem. Engng IV) 469, 166 (1986)Google Scholar
  6. Anderson, J.L.: Colloid transport by interfacial forces. Ann. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  7. Anderson, J.L., Lowell, M.E., Prieve, D.C.: Motion of a particle generated by chemical gradients. Part 1. Non-electrolytes. J. Fluid Mech. 117, 107 (1982)ADSCrossRefzbMATHGoogle Scholar
  8. Anderson, J.L., Prieve, D.C.: Diffusiophoresis caused by gradients of stronglyadsorbing solutes. Langmuir 7, 403 (1991)CrossRefGoogle Scholar
  9. Ascoli, E.P., Leal, L.G.: Thermocapillary motion of a deformable drop toward a planar wall. J. Colloid Interface Sci. 138, 220 (1990)CrossRefGoogle Scholar
  10. Bakanov, S.P.: Thermophoresis in gases at small knudsen numbers. Aerosol Sci. Technol. 15, 77 (1991)CrossRefGoogle Scholar
  11. Barton, K.D., Subramanian, R.S.: Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci. 137, 170 (1990)CrossRefGoogle Scholar
  12. Barton, K.D., Subramanian, R.S.: Migration of liquid drops in a vertical temperature gradient-Interaction effects near a horizontal surface. J. Colloid Interface Sci. 141, 146 (1991)Google Scholar
  13. Batchelor, G.K., Shen, C.: Thermophoretic deposition of particles in gas flowing over cold surfaces. J. Colloid Interface Sci. 107, 21 (1985)CrossRefGoogle Scholar
  14. Berg, H.C., Turner, L.: Chemotaxis of bacteria in glass capillary arrays. Biophys. J. 58, 919 (1990)CrossRefGoogle Scholar
  15. Brock, J.R.: On the theory of thermal forces acting on aerosol particles. J. Colloid Sci. 17, 768 (1962)CrossRefGoogle Scholar
  16. Chen, J., Dagan, Z., Maldarelli, C.: The axisymmetric thermocapillary motion of a fluid particle in a tube. J. Fluid Mech. 233, 405 (1991)ADSCrossRefzbMATHGoogle Scholar
  17. Chen, S.B., Keh, H.J.: In Interfacial forces and fields. In: Hsu, J. (ed.). Dekker, New York (1999)Google Scholar
  18. Chen, S.H.: Thermocapillary deposition of a fluid droplet normal to a planar surface. Langmuir 15, 2674 (1999)CrossRefGoogle Scholar
  19. Chen, S.H.: Boundary effects on a thermophoretic sphere in an arbitrary direction of a plane surface. AIChE J. 46, 2352 (2000)CrossRefGoogle Scholar
  20. Chen, S.H., Keh, H.J.: Thermocapillary motion of a fluid droplet normal to a plane surface. J. Colloid Interface Sci. 137, 550 (1990)CrossRefGoogle Scholar
  21. Chen, S.H., Keh, H.J.: Axisymmetric motion of two spherical particles with slip surfaces. J. Colloid Interface Sci. 171, 63 (1995)CrossRefGoogle Scholar
  22. Dukhin, S.S., Derjaguin, B.V.: Electrokinetic pheonmena. In: Matijevic, E.(ed.) J. Colloid Interface Sci., vol. 7. Wiley, New York (1974)Google Scholar
  23. Ebel, J.P., Anderson, J.L., Prieve, D.C.: Diffusiophoresis of latex particles in electrolyte gradients. Langmuir 4, 396 (1988)CrossRefGoogle Scholar
  24. Friedlander, S.K.: Smoke, Dust and Haze. Wiley. New York (1977)Google Scholar
  25. Gordon, L.G.M.: Osmophoresis. J. Phys. Chem. 85, 1753 (1981)ADSCrossRefGoogle Scholar
  26. Kasumi, H., Solomentsev, Y.E., Guelcher, S.A., Anderson, J.L., Sides, P.J.: Thermocapillary flow and aggregation of bubbles on a solid wall. J. Colloid Interface Sci. 232, 111 (2000)CrossRefGoogle Scholar
  27. Keh, H.J., Chang, J.H.: Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chem. Engng. Sci. 53, 2365 (1998)CrossRefGoogle Scholar
  28. Keh, H.J., Hsu, J.H.: Boundary effects on diffusiophoresis of cylindrical particles in nonelectrolyte gradients. J. Colloid Interface Sci. 221, 210 (2000)CrossRefGoogle Scholar
  29. Keh, H.J., Jan, J.S.: Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall. J. Colloid Interface Sci. 183, 458 (1996)CrossRefGoogle Scholar
  30. Keh, H.J., Yang, F.R.: Boundary effects on osmophoresis: Motion of a vesicle normal to a plane wall. Chem. Engng. Sci. 48, 609 (1993a)CrossRefGoogle Scholar
  31. Keh, H.J., Yang, F.R.: Boundary effects on osmophoresis: Motion of a vesicle in an arbitrary direction with respect to a plane wall. Chem. Engng. Sci. 48, 3555 (1993b)CrossRefGoogle Scholar
  32. Keh, H.J., Yu, J.L.: Migration of aerosol spheres under the combined acting of thermophoretic and gravitational effects. Aerosol Sci. Technol. 22, 250 (1995)CrossRefGoogle Scholar
  33. Kennard, E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)Google Scholar
  34. Li, W., Davis, E.J.: Measurement of the thermophoretic force by electrodynamic levitation: microspheres in air. J. Aerosol Sci. 26, 1063 (1995)CrossRefGoogle Scholar
  35. Loewenberg, M., Davis, R.H.: Near-contact thermocapillary motion of two non-conducting drops. J. Fluid Mech. 256, 107 (1993a)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. Loewenberg, M., Davis, R.H.: Near-contact, thermocapillary migration of a nonconducting, viscous drop normal to a planar interface. J. Colloid Interface Sci. 160, 265 (1993b)CrossRefGoogle Scholar
  37. Loyalka, S.K.: Thermophoretic force on a single particle-i. Numerical solution of the lineralized Boltzmann equation. J. Aerosol Sci. 23, 291 (1992)CrossRefGoogle Scholar
  38. Lu, S.-Y., Lee, C.-T.: Thermophoretic motion of an aerosol particle in a non-concentric pore. J. Aerosol Sci. 32, 1341 (2001)CrossRefGoogle Scholar
  39. Meyyappan, M., Subramanian, R.S.: Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci. 115, 206 (1987)CrossRefGoogle Scholar
  40. Meyyappan, M., Wilcox, W.R., Subramanian, R.S.: Thermocapillary migration of a bubble normal to a plane surface. J. Colloid Interface Sci. 83, 199 (1981)CrossRefGoogle Scholar
  41. Meyyappan, M., Wilcox, W.R., Subramanian, R.S.: The slow axisymmetric motion of two bubbles in a thermal gradient. J. Colloid Interface Sci. 94, 243 (1983)CrossRefGoogle Scholar
  42. Montassier, N., Boulaud, D., Renoux, A.: Experimental study of thermophoretic particle deposition in laminar tube flow. J. Aerosol Sci. 22, 677 (1991)CrossRefGoogle Scholar
  43. Morse, T.F., Wang, C.Y., Cipolla, J.W.: Laser-Induced thermophoresis and particle deposition efficiency. J. Heat Transfer 107, 155 (1985)CrossRefGoogle Scholar
  44. Morton, D.S., Subramanian, R.S., Balasubramaniam, R.: The migration of a compound drop due to thermocapillarity. Phys. Fluids A 2, 2119 (1990)ADSCrossRefzbMATHGoogle Scholar
  45. Nardi, J., Bruinsma, R., Sackmann, E.: Vesicles as osmotic motors. Phys. Rev. Lett. 82, 5168 (1999)ADSCrossRefGoogle Scholar
  46. Sadhal, S.S.: A note on the thermocapillary migration of a bubble normal to a plane surface. J. Colloid Interface Sci. 95, 283 (1983)CrossRefGoogle Scholar
  47. Sasse, A.G.B.M., Nazaroff, W.W., Gadgil, A.J.: Particle filter based on thermophoretic deposition from nature convection flow. Aerosol Sci. Technol. 20, 227 (1994)CrossRefGoogle Scholar
  48. Satrape, J.V.: Interactions and collisions of bubbles in thermocapillary motion. Phys. Fluids A 4, 1883 (1992)ADSCrossRefzbMATHGoogle Scholar
  49. Simpkins, P.G., Greenberg-Kosinski, S., MacChesney, J.B.: Thermophoresis: The masstransfer mechanism in modified chemical vapor deposition. J. Appl. Phys. 50, 5676 (1979)ADSCrossRefGoogle Scholar
  50. Staffeld, P.O., Quinn, J.A.: Diffusion-induced banding of colloid particles via diffusiophoresis. 2. Non-electrolytes. J. Colloid Interface Sci. 130, 88 (1989)CrossRefGoogle Scholar
  51. Subramanian, R.S.: Slow migration of a gas bubble in a thermal gradient. AIChE J. 27, 646 (1981)CrossRefGoogle Scholar
  52. Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in heated boundary layer. J. Fluid Mech. 101, 737 (1980)ADSCrossRefGoogle Scholar
  53. Waldmann, L., Schmitt, K. H.: Thermophoresis and Diffusiophoresis of Aerosols, Aerosol Science. In: Davies, C.N. (ed.) Academic Press, New York (1966)Google Scholar
  54. Weinberg, M.C.: Thermophoretic efficiency in modified chemical vapor deposition process. J. Am. Ceram. Soc. 65, 81 (1982)CrossRefGoogle Scholar
  55. Whitmore, P.J.: Thermo- and diffusiophoresis for small aerosol particles. J. Aerosol Sci. 12, 1 (1981)CrossRefMathSciNetGoogle Scholar
  56. Williams, M.M.R.: Thermophoretic forces acting on a spheroid. J. Phys. D. 19, 1631 (1986)ADSCrossRefGoogle Scholar
  57. Williams, M.M.R., Loyalka, S.K.: Aerosol Science: Theory and practice, with special applications to the nuclear industry. Pergamon Press, Oxford (1991)Google Scholar
  58. Ye, Y., Pui, D.Y.H., Liu, B.Y.H., Opiolka, S., Blumhorst, S., Fissan, H.: Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room. J. Aerosol Sci. 22, 63 (1991)CrossRefGoogle Scholar
  59. Young, N.O., Goldstein, J.S., Block, M.J.: The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6, 350 (1959)ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan

Personalised recommendations