Skip to main content

Zusammenfassung

Das Kapitel beschreibt die praktische Messung der otoakustischen Emissionen (OAE) sowie ihre Bewertung und audiologische Interpretation, in Bezug sowohl auf die von linearen Anteilen bereinigten transitorisch (mit Klick-Reizen) evozierten OAE (TEOAE) als auch auf die auf nichtlinearen Verzerrungen des Innenohres beruhenden otoakustischen Distorsionsprodukte (DPOAE). Breiten Raum nimmt die Beurteilung der Messbedingungen in Bezug auf Sondenlage und Störsignaleinfluss ein. Mit Hilfe der Begriffe Stabilität, Restrauschen, Reproduzierbarkeit und Signal/Rausch-Verhältnis gelingt die Unterscheidung zwischen objektiv abwesenden Reizantworten und solchen, die sich dem Nachweis entziehen. Der in Screening-Geräten angewendete automatische Signalnachweis beruht auf signalstatistischen Verfahren, die auf eine hohe Sensitivität getrimmt sind. Frequenzspezifität und Wachstumsfunktionen werden diskutiert, ebenso wie die auf der efferenten Steuerung der Haarzellen beruhende und bei der Erkennung bestimmter Funktionsstörungen sehr aufschlussreiche kontralaterale Suppression der OAE durch kontralaterale akustische Stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abdala C (2000) Distortion product otoacoustic emission (2f1-f2) amplitude growth in human adults and neonates. J Acoust Soc Am 107(1):446–456

    Google Scholar 

  • Abdala C, Dhar S (2012) Maturation and aging of the human cochlea: A view through the DPOAE looking glass. JARO 13:403–421

    Google Scholar 

  • Abdala C, Sininger YS, Starr A (2000) Distortion product otoacoustic emissions suppression in subjects with auditory neuropathy. Ear Hear 21:542–553

    Google Scholar 

  • Attias J, Furst M, Furman V, Reshef I, Horowitz G, Bresloff I (1995) Noise-induced otoacoustic emission loss with or without hearing loss. Ear Hear 16(6):612–618

    Google Scholar 

  • Berlin CI, Hood LJ, Hurley A, Wen H (1993) Contralateral suppression of non-linear click-evoked otoacoustic emissions. Hear Res 71:1–11

    Google Scholar 

  • Boege P, Janssen T (2002) Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. J Acoust Soc Am 111(4):1810–1818

    Google Scholar 

  • Bönnhoff S, Hoth S (1993) Die Stabilität der transitorisch evozierten otoakustischen Emissionen und ihre Eignung zum Nachweis von Veränderungen des Hörvermögens. Audiol Akust 32:32–53

    Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimulation on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–261

    Google Scholar 

  • Collet L, Veuillet E, Bene J, Morgon A (1992) Effects of contralateral white noise on click-evoked emissions in normal and sensorineural ears: Towards an exploration of the medial olivocochlear system. Audiology 31:1–7

    Google Scholar 

  • De Boer J, Thornton RD, Krumbholz K (2012) What is the role of the medial olivcochlear system in speech-in-noise processing? J Neurophysiol 107:1301–1312

    Google Scholar 

  • Dalhoff E, Turcanu D, Vetešník A, Gummer AW (2013) Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects. Hear Res 296:67–82

    Google Scholar 

  • Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112(6):2882–2897

    Google Scholar 

  • Durante AS, Carvallo RM (2008) Contralateral suppression of linear and nonlinear transient evoked otoacoustic emissions in neonates at risk for hearing loss. J Commun Disord 41(1):70–83

    Google Scholar 

  • Engdahl B, Tambs K, Hoffmann HJ (2013) Otoacoustic emissions, pure-tone audiometry, and self-reported hearing. Int J Audiol 52(2):74–82

    Google Scholar 

  • Ernst A, Lenarz T (1997) Otoacoustic emissions in predicting noise induced hearing loss in vulnerable inner ears. In:European commission concerted action – protection against noise. University college London, ILO April 16–19, abstract page 35

    Google Scholar 

  • Gehr DD, Janssen T, Michaelis CE, Deingruber K, Lamm K (2004) Middle ear and cochlear disorders result in different DPOAE growth behavior: Implications for the differentiation of sound conductive and cochlear hearing loss. Hear Res 193:9–19

    Google Scholar 

  • Gorga MP, Neely ST, Bergman BM, Beauchaine KL, Kaminski JR, Peters J, Schulte L, Jesteadt W (1993) A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing impaired subjects. J Acoust Soc Am 94(5):2639–2648

    Google Scholar 

  • Gorga MP, Neely ST, Dorn PA, Brenda MH (2003) Further efforts to predict pure-tone thresholds from the distortion product otoacoustic emission input/output functions. J Acoust Soc Am 113:3275–3284

    Google Scholar 

  • Guinan JJ (2006) Olicocochlear efferents:Anatomy, physiology, function, and the measurement of efferent effecs in humans. Ear Hear 27:589–607

    Google Scholar 

  • Heitmann J, Waldmann B, Schnitzler HU, Plinkert PK, Zenner HP (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure – Evidence for a secondary generator. J Acoust Soc Am 103:1527–1531

    Google Scholar 

  • Hood LJ, Berlin CI, Bordelon J, Rose K (2003) Patients with auditory neuropathy/dys-synchrony lack efferent suppression of transient evoked otoacoustic emissions. J Am Acad Audiol 14(6):302–313

    Google Scholar 

  • Hoth S (1991) Zeitlich differentielle Analyse des Korrelationskoeffizienten: Eine Bereicherung bei der Auswertung von akustisch evozierten Potentialen. Audiol Akust 30:214–220

    Google Scholar 

  • Hoth S (1995) Zusammenhang zwischen EOAE-Parametern und Hörverlust (Relationship between parameters of evoked otoacoustic emissions and hearing loss). Audiol Akust 34:20–29

    Google Scholar 

  • Hoth S (1996) Der Einfluß von Innenohrhörstörungen auf verzögerte otoakustische Emissionen (TEOAE) und Distorsionsprodukte (DPOAE). Laryngol Rhinol Otol 75:709–718

    Google Scholar 

  • Hoth S (2002) Korrelation zwischen Tonaudiogramm und Frequenzabhängigkeit der otoakustischen Emissionen. DGA 5. Jahrestagung Zürich. Tagungs-CD

    Google Scholar 

  • Hoth S (2003) Warum sind TEOAE und DPOAE gegenüber cochleären Funktionsdefiziten unterschiedlich empfindlich? Z Audiol 42(2):48–50

    Google Scholar 

  • Hoth S (2005) On a possible prognostic value of otoacoustic emissions. A study on patients with sudden hearing loss. Eur Arch Otorhinolaryngol 262(3):217–224

    Google Scholar 

  • Hoth S, Bönnhoff S (1993) Klinische Anwendung der transitorisch evozierten otoakustischen Emissionen zur therapiebegleitenden Verlaufskontrolle. HNO 41:135–145

    Google Scholar 

  • Hoth S, Böttcher P (2008) Nomenklatur und Diagramme bei der Beschreibung und Interpretation von OAE-Messungen. Z Audiol 47(4):140–149

    Google Scholar 

  • Hoth S, Lenarz T (1997) Otoakustische Emissionen – Grundlagen und Anwendung. 2. Aufl. Thieme, Stuttgart, ISBN 3-13-127602-9

    Google Scholar 

  • Hoth S, Neumann K (2006) Das OAE-Handbuch. Otoakustische Emissionen in der Praxis. Thieme, Stuttgart, ISBN-10: 3-13-142561-X/ISBN-13: 978-3-13-3142561-4

    Google Scholar 

  • Hoth S, Neumann K (2006) Die diagnostische Aussagekraft der otoakustischen Emissionen. Praktische Arbeitsmedizin 6:18–24

    Google Scholar 

  • Hoth S, Polzer M (2006) Qualität in Zahlen. Signalnachweis in der objektiven Audiometrie. Z Audiol 45(3):100–110

    Google Scholar 

  • Hoth S, Weber F (2001) The latency of evoked otoacoustic emissions:Its relation to hearing loss and auditory evoked potentials. Scand Audiol 30:173–183

    Google Scholar 

  • Hoth S, Gudmundsdottir K, Plinkert P (2010) Age dependence of otoacoustic emissions: The loss of amplitude is primarily caused by age-related hearing loss and not by aging alone. Eur Arch Otorhinolaryngol 267(5):679–690

    Google Scholar 

  • Janssen T (2009) Otoakustische Emissionen. In Lehnhardt E, Laszig R (Hrsg) Praxis der Audiometrie, 9. Aufl. Thieme, Stuttgart, ISBN 3-13-369009-6

    Google Scholar 

  • Janssen T, Gehr DD, Klein A, Müller J (2005) Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates. J Acoust Soc Am 117(5):2969–2979

    Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmising:A test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109(2):622–637

    Google Scholar 

  • Kandzia F, Oswald J, Janssen T (2011) Binaural measurement of bone conduction click evoked otoacoustic emissions in adults and infants. J Acoust Soc Am 129:1464–1474

    Google Scholar 

  • Kapadia S, Lutman ME (1999) Reduced ‘audiogram ripple’ in normally-hearing subjects with weak otoacoustic emissions. Audiol 38:257–261

    Google Scholar 

  • Keppler H, Dhooge H, Maes L, D’haenens W, Bockstael A, Philips B, Swinnen F, Vinck B (2010) Transient-evoked and distortion product otoacoustic emissions: A short-term test-retest reliability study. Int J Audiol 49:99–109

    Google Scholar 

  • Konrad-Martin D, Neely ST, Keefe DH, Dorn PA, Gorga MP (2001) Sources of distortion product otoacoustic emissions revealed by suppression experiments and inverse fast Fourier transforms in normal ears. J Acoust Soc Am 109:2862–2879

    Google Scholar 

  • Kumar UA, Methi R, Avinash MC (2013) Test/retest repeatability of effect contralateral acoustic stimulation on the magnitudes of distortion product otoacoustic emissions. Laryngoscope 123(2):463–471

    Google Scholar 

  • Kummer P, Janssen T, Arnold W (1998) The level and growth behavior of the 2f1-f2 distortion product otoacoustic emission and its relationship to auditory sensitivity in normal hearing and cochlear hearing loss. J Acoust Soc Am 103:3431–3444

    Google Scholar 

  • Kummer P, Janssen T, Hulin P, Arnold W (2000) Optimal L1-L2 primary tone level separation remains independent of test frequency in humans. Hearing Research 146:47–56

    Google Scholar 

  • Lapsley Miller JA, Marshall L, Heller LM (2004) A longitudinal study of changes in evoked otoacoustic emissions and pure-tone thresholds as measured in a hearing conservation program. Int J Audiol 43:307–322

    Google Scholar 

  • Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584

    Google Scholar 

  • Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124(3):1613–1626

    Google Scholar 

  • Lonsbury-Martin BL, Martin GK (2007) Otoacoustic Emissions. In: Burkard RF, Don M, Eggermont JJ (eds) Auditory evoked potentials. Basic principles and clinical application. Lippincott Williams & Wilkins, Baltimore, pp 159–180

    Google Scholar 

  • Lucertini M, Moleti A, Sisto R (2002) On the detection of early cochlear damage by otoacoustic emission analysis. J Acoust Soc Am 111(2):972–978

    Google Scholar 

  • Margolis RH, Trine MB (1997) Influence of middle-ear disease on otoacoustic emissions. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: Clinical applications. Thieme, New York, pp 130–150

    Google Scholar 

  • Marshall L, Heller LM (1996) Reliability of transient-evoked otoacoustic emissions. Ear Hear 17(3):237–256

    Google Scholar 

  • McAlpine D, Johnstone BM (1990) The ototoxic mechanism of cisplatin. Hear Res 47:191–203

    Google Scholar 

  • Moleti A, Sisto R, Lucertini M (2002) Linear and nonlinear transient evoked otoacoustic emissions in humans exposed to noise. Hear Res 174(1–2):290–295

    Google Scholar 

  • Moser T, Strenzke N, Meyer A, Lesinski-Schiedat A, Lenarz T, Beutner D, Foerst A, Lang-Roth R, von Wedel H, Walger M, Gross M, Keilmann A, Limberger A, Steffens T, Strutz J (2006) Diagnosis and therapy of auditory synaptopathy/neuropathy. HNO 54(11):833–841

    Google Scholar 

  • Moulin A, Collet L, Duclaux R (1993) Contralateral auditory stimulation alters acoustic distortion products in humans. Hear Res 65:193–210

    Google Scholar 

  • Müller P, Kompis M (2002) Evaluation of a noise reduction system for the assessment of click-evoked otoacoustic emissions. J Acoust Soc Am 112(1):164–171

    Google Scholar 

  • Plinkert PK, Lenarz T (1992) Evozierte otoakustische Emissionen und ihre Beeinflussung durch kontralaterale akustische Stimulation. Laryngol Rhinol Otol 71:74–78

    Google Scholar 

  • Plinkert PK, Kröber S (1991) Früherkennung einer Cisplatin-Ototoxizität durch evozierte otoakustische Emissionen. Laryngol Rhinol Otol 70:457–462

    Google Scholar 

  • Plinkert PK, Hemmert W, Zenner HP (1995) Methodenvergleich zur Früherkennung einer Lärmvulnerabilität des Innenohres. HNO 43:89–97

    Google Scholar 

  • Plinkert PK, Hemmert W, Wagner W, Just K, Zenner HP (1999) Monitoring noise susceptibility: Sensitivity of otoacoustic emissions and subjective audiometry. Br J Audiol 33:367–382

    Google Scholar 

  • Prieve BA, Gorga MP, Schmidt A, Neely S, Peters J, Schultes L, Jestaedt W (1993) Analysis of transient-evoked emissions in normal-hearing and hearing-impaired ears. J Acoust Soc Am 93:3308–3319

    Google Scholar 

  • Probst R, Hauser R (1990) Distortion product otoacoustic emissions in normal and hearing-impaired ears. Am J Otolaryngol 11:236–243

    Google Scholar 

  • Probst R, Lonsbury-Martin BL, Martin GK, Coats AC (1987) Otoacoustic emissions in ears with hearing loss. Am J Otolaryngol 8:73–81

    Google Scholar 

  • Probst R, Harris FP (1997a) Otoacoustic emissions. In Alford BR, Jerger J, Jenkins HA (eds) Electrophysiologic evaluation in otolaryngology. Adv Otolaryngol 53. Karger, Basel, pp 182–204

    Google Scholar 

  • Probst R, Harris FP (1997b) Otoacoustic emissions and audiometric outcomes. In: Robinette MS, Glattke TJ (eds.) Otoacoustic emissions: Clinical applications. Thieme, New York, pp 151–180

    Google Scholar 

  • Puel JL, Rebillard G (1990) Effect of contralateral sound stimulation on the distortion product 2F1-F2: Evidence that the medial efferent system is involved. J Acoust Soc Am 87:1630–1635

    Google Scholar 

  • Rödel R, Breuer T (1994) Evozierte otoakustische Emissionen und Mittelohrfunktion. Laryngol Rhinol Otol 73:118–122

    Google Scholar 

  • Ryan S, Kemp DT, Hinchcliffe R (1991) The influence of contralateral acoustic stimulation on click-evoked otoacoustic emissions in humans. British J Audiol 25:391–397

    Google Scholar 

  • Shera CA, Guinan JJ jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105(2):782–798

    Google Scholar 

  • Stavroulaki P, Apostolopoulos N, Segas J, Tsakanikos M, Adamopoulos G (2001) Evoked otoacoustic emissions – an approach for monitoring cisplatin induced ototoxicity in children. Int J Ped Otorhinolaryngol 59:47–57

    Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104(3):1517–1543

    Google Scholar 

  • Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105:275–292

    Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108(6):2911–2932

    Google Scholar 

  • Wagner W, Plinkert PK (1999) The relationship between auditory threshold and evoked otoacoustic emissions. Eur Arch Otorhinolaryngol 256:177–188

    Google Scholar 

  • Wagner W, Heppelmann G, Müller J, Janssen T, Zenner HP (2007) Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips. Hear Res 223:83–92

    Google Scholar 

  • Wagner W, Heppelmann G, Vonthein R, Zenner HP (2008) Test-Retest repeatability of distortion product otoacoustic emissions. Ear Hear 29(3):378–391

    Google Scholar 

  • Waldmann B, Heitmann J, Plinkert PK (1997) »Single generator«-Distorsionsprodukte (sgDPOAE): Entwicklung eines neuen Präzisionsmeßsystems. Audiol Akust 36:22–31

    Google Scholar 

  • Walger M, Foerst A, Beutner D, Streicher B, Stürmer K, Lang-Roth R (2011) Auditorische Synaptopathie/Neuropathie. Klinik und Diagnostik. HNO 59:414–424

    Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1992) Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: I. Differential dependence on stimulus parameters. J Acoust Soc Am 91:1587–1607

    Google Scholar 

  • Whitehead ML, Lonsbury-Martin BL, Martin GK (1992) Evidence for two discrete sources of 2f1-f2 distortion-product otoacoustic emission in rabbit: II. Differential physiological vulnerability. J Acoust Soc Am 92:2662–2682

    Google Scholar 

  • Yalçinkaya F, Yilmaz ST, Muluk NB (2010) Transient evoked otoacoustic emissions and contralateral suppression in children with auditory listening problems. Auris Nasus Larynx 37(1):47–54

    Google Scholar 

  • Yang LP, Young ST, Kuo TS (2002) Effects of noise on transient-evoked oto-acoustic emission pass/fail criteria. Med Biol Eng Comp 40:278–281

    Google Scholar 

  • Yilmaz S, Öktem F, Karaman E (2010) Detection of cisplatin-induced ototoxicity with transient evoked otoacoustic emission test before pure tone audiometer. Eur Arch Otorhinolaryngol 267:1041–1044

    Google Scholar 

  • Zebian M, Kandzia F, Janssen T, Hensel J, Fedtke T (2013) Otoacoustic emissions stimulated by bone conduction – a review (Otoakustische Emissionen stimuliert über Knochenleitung – eine Übersicht). Z Audiol 52(3):96–106

    Google Scholar 

  • Zhao F, Stephens D (1999) Test-retest variability of distortion-product otoacoustic emissions in human ears with normal hearing. Scand Audiol 28:171–178

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walger, M., Hoth, S. (2014). Otoakustische Emissionen (OAE). In: Objektive Audiometrie im Kindesalter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-44936-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-44936-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-44935-2

  • Online ISBN: 978-3-642-44936-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics