GAMA 1.6: Advancing the Art of Complex Agent-Based Modeling and Simulation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8291)


Agent-based models tend to be more and more complex. In order to cope with this increase of complexity, powerful modeling and simulation tools are required. These last years have seen the development of several platforms dedicated to the development of agent-based models. While some of them are still limited to the development of simple models, others allow to develop rich and complex models. Among them, the GAMA modeling and simulation platform is aimed at supporting the design of spatialized, multiple-paradigms and multiple-scales models. Several papers have already introduced GAMA, notably in earlier PRIMA conferences, and we would like, in this paper, to introduce the new features provided by GAMA 1.6, the latest revision to date of the platform. In particular, we present its capabilities concerning the tight combination of 3D visualization, GIS data management, and multi-level modeling. In addition, we present some examples of real projects that rely on GAMA to develop complex models.


Agent-based modeling simulation GIS multi-level ODE platform visualization complex systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apolloni, A., Poletto, C., Colizza, V., et al.: Age-specific contacts and travel patterns in the spatial spread of 2009 h1n1 influenza pandemic. BMC Infectious Diseases 13(1), 1–18 (2013)CrossRefGoogle Scholar
  2. 2.
    Araujo, F., Valente, J., Al-Zinati, M., Kuiper, D., Zalila-Wenkstern, R.: Divas 4.0: A framework for the development of situated multi-agent based simulation systems. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, AAMAS 2013, pp. 1351–1352. International Foundation for Autonomous Agents and Multiagent Systems (2013)Google Scholar
  3. 3.
    Axelrod, R.M.: The complexity of cooperation: Agent-based models of competition and collaboration. Princeton University Press (1997)Google Scholar
  4. 4.
    Banos, A., Marilleau, N.: Improving individual accessibility to the city: An agent-based modelling approach. In: ECCS (2012)Google Scholar
  5. 5.
    Colizza, V., Vespignani, A.: Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. Journal of Theoretical Biology 251(3), 450–467 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Crooks, A.T., Castle, C.J.E.: Agent-Based Models of Geographical Systems. Springer Netherlands, Dordrecht (2012)Google Scholar
  7. 7.
    Daniel Kornhauser, U.W., Rand, W.: Design Guidelines for Agent Based Model Visualization. Journal of Artificial Societies and Social Simulation 12(2) (2009)Google Scholar
  8. 8.
    De Wolf, T., Holvoet, T.: Emergence versus self-organisation: Different concepts but promising when combined. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Drogoul, A., Amouroux, E., Caillou, P., Gaudou, B., Grignard, A., Marilleau, N., Taillandier, P., Vavasseur, M., Vo, D.A., Zucker, J.D.: Gama: multi-level and complex environment for agent-based models and simulations. In: AAMAS 2013, pp. 1361–1362. International Foundation for Autonomous Agents and Multiagent Systems (2013)Google Scholar
  10. 10.
    Edmonds, B., Moss, S.: From KISS to KIDS – an ‘Anti-simplistic’ modelling approach. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS (LNAI), vol. 3415, pp. 130–144. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Gaudou, B., Sibertin-Blanc, C., Thérond, O., Amblard, F., Arcangeli, J.P., Balestrat, M., Charron-Moirez, M.H., Gondet, E., Hong, Y., Louail, T., Mayor, E., Panzoli, D., Sauvage, S., Sanchez-Perez, J., Taillandier, P., Nguyen, V.B., Vavasseur, M., Mazzega, P.: The MAELIA multi-agent platform for integrated assessment of low-water management issues (regular paper). In: International Workshop on Multi-Agent-Based Simulation (MABS), Saint-Paul, MN, USA. Springer (2013)Google Scholar
  12. 12.
    Gil-Quijano, J., Louail, T., Hutzler, G.: From biological to urban cells: lessons from three multilevel agent-based models. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 620–635. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Grignard, A., Drogoul, A., Zucker, J.D.: A model-view/controller approach to support visualization and online data analysis of agent-based simulation. In: Proceedings of 2013 IEEE RIVF (2013)Google Scholar
  14. 14.
    Grignard, A., Drogoul, A., Zucker, J.-D.: Online analysis and visualization of agent based models. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 662–672. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Hanski, I.: Metapopulation Ecology. Oxford University Press (1999)Google Scholar
  16. 16.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London 115(772), 700–721 (1927)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lamarche-Perrin, R., Demazeau, Y., Vincent, J.-M.: How to Build the Best Macroscopic Description of your Multi-agent System? In: Demazeau, Y., Ishida, T., Corchado, J.M., Bajo, J. (eds.) PAAMS 2013. LNCS, vol. 7879, pp. 157–169. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Le Page, C., Bousquet, F., Bakam, I., Bah, A., Baron, C.: Cormas: A multiagent simulation toolkit to model natural and social dynamics at multiple scales. In: Proceedings of Workshop “The Ecology of Scales”, Wageningen, The Netherlands (2000)Google Scholar
  19. 19.
    Lotka, A.J.: Contribution to the theory of periodic reactions. The Journal of Physical Chemistry 14(3), 271–274 (1909)CrossRefGoogle Scholar
  20. 20.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRefGoogle Scholar
  21. 21.
    Morvan, G.: Multi-level agent-based modeling-bibliography. arXiv preprint arXiv:1205.0561 (2013)Google Scholar
  22. 22.
    Nguyen, T.N.A., Zucker, J.D., Nguyen, H.D., Drogoul, A., Vo, D.A.: A hybrid macro-micro pedestrians evacuation model to speed up simulation in road networks. In: Dechesne, F., Hattori, H., ter Mors, A., Such, J.M., Weyns, D., Dignum, F. (eds.) AAMAS 2011 Workshops. LNCS, vol. 7068, pp. 371–383. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adaptive Systems Modeling 1(1), 1–26 (2013)CrossRefGoogle Scholar
  24. 24.
    Railsback, S.F., Lytinen, S.L., Jackson, S.K.: Agent-based Simulation Platforms: Review and Development Recommendations. Simulation, 609–623 (2006)Google Scholar
  25. 25.
    Servat, D., Perrier, E., Treuil, J.-P., Drogoul, A.: When agents emerge from agents: Introducing multi-scale viewpoints in multi-agent simulations. In: Sichman, J.S., Conte, R., Gilbert, N. (eds.) MABS 1998. LNCS (LNAI), vol. 1534, pp. 183–198. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Taillandier, P., Vo, D.-A., Amouroux, E., Drogoul, A.: GAMA: A simulation platform that integrates geographical information data, agent-based modeling and multi-scale control. In: Desai, N., Liu, A., Winikoff, M. (eds.) PRIMA 2010. LNCS, vol. 7057, pp. 242–258. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
    Taillandier, P., Thérond, O., Gaudou, B.: A new BDI agent architecture based on the belief theory. Application to the modelling of cropping plan decision-making (regular paper). In: International Environmental Modelling and Software Society (iEMSs), Leipzig, Germany, July 1-5 (2012)Google Scholar
  28. 28.
    Tisue, S., Wilensky, U.: Netlogo: A simple environment for modeling complexity. In: International Conference on Complex Systems, pp. 16–21 (2004)Google Scholar
  29. 29.
    Treuil, J.P., Drogoul, A., Zucker, J.D.: Modélisation et simulation à base d’agents: exemples commentés, outils informatiques et questions théoriques. Dunod (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.UMI 209 UMMISCO/MSIUPMCFrance
  2. 2.UMI 209 UMMISCO/MSIIRDVietnam
  3. 3.UMR 6266 IDEESCNRS/University of RouenFrance
  4. 4.UMR 5505 IRITCNRS/University of ToulouseFrance
  5. 5.DREAM-CTU/IRD, CICTCan Tho UniversityVietnam

Personalised recommendations